Ground-Based Millimeter- and Submillimeter-Wave Observations of Low Vapor and Liquid Water Contents

Domenico Cimini, Ed R. Westwater, Albin J. Gasiewski, Marian Klein, Vladimir Ye Leuski, James C. Liljegren
2007 IEEE Transactions on Geoscience and Remote Sensing  
Ground-based observations at millimeter (mm) and submillimeter (submm) wavelengths were collected at the Atmospheric Radiation Measurement Program site at Barrow, AK, during the Arctic winter by a new 25-channel radiometer. A weighting function analysis is presented to demonstrate the enhanced sensitivity of mm-and submm-wave (50-400 GHz) radiometers to low vapor and liquid water contents with respect to conventional instruments such as the ones operating at centimeter (cm) wavelengths (20-30
more » ... z). In addition, based on measurements, we carried out a quantitative analysis of mmand submm-wavelength sensitivity, yielding improvement factors from 1.5 to 69 for precipitable water vapor (PWV) and 3 to 4 for liquid water path (LWP) when compared to 20-30 GHz radiometers. Furthermore, using a simulated data set, we evaluate the effect of hydrometeor scattering: Given the conditions occurring during the experiment, the scattering contribution is within the instrumental noise for most, but not all, of the considered channels. With the same data set, we demonstrate that in the dry conditions of the Arctic, a simple linear regression yields satisfactory results when applied on selected mm-and submm-wave channels. For a dual-channel combination, the expected accuracy is ∼0.23 (0.007) mm for PWV (LWP), when using mm-and submm-wavelengths, whereas it is 0.37 (0.012) mm using cm-wave channels. When the retrieval is applied to real observations, the accuracy is found in agreement with theoretical expectations.
doi:10.1109/tgrs.2007.897450 fatcat:fv2onm65dfcohobl32v6wfjj3y