Evaluation of the stressed state of cutting elements of coated end-milling hard-alloy combined cutters

B. Ya. Mokritskii, V. Yu. Vereshchagin
2021 Вестник Иркутского государственного технического университета  
This paper compares stresses arising in the tool material of combined end-milling cutters and their admissible values with the purpose of preventing cutter destruction. The limit stress values of tool materials for the developed endmilling hard-alloy combined cutters having an interfaced cutting part and tailpiece were investigated. The cutting part was made of a tool-grade hard alloy, and the tailpiece was made of structural steel. To determine stresses, simulation modelling was carried out in
more » ... the ANSYS and Deform software. The cutting force components were found experimentally. It was assumed that lower cutting force components lead to lower stresses in the tool material. This results in a lower probability of tool material destruction. The process of cutting the hard-to-cut stainless steel 12Kh18N10T was considered at the following parameters: a cutting speed of 70 m/min, a cutting depth of 1 mm, and a feeding of 0.1 mm/tooth. The tool material VK8 with no coating and with various coatings promoting the reduction of cutting force components was studied. It was confirmed that a combined end-milling cutter 16 mm in diameter and 92 mm long can be used to cut parts with the same accuracy as using a solid end-milling hard-alloy cutter. An increase in the length of combined cutters decreases the cutting accuracy; however, for lengths 123 and 180 mm, these cutters can be used to manufacture parts applied in general machine building. Therefore, combined end-milling cutters can compete with solid cutters in terms of the manufacturing accuracy and resilience period, which limits the existing applicability of solid cutters. The cost of combined cutters is 10–60% lower than that of solid cutters.
doi:10.21285/1814-3520-2021-4-421-434 fatcat:erxnecyxhjen5hn6klniqnmabq