Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama

Derya Ersel, Yasemin Atılgan, Süleyman Günay
2011 Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi  
Özet: Zaman serisi analizi, finansal varlıkların çözümlemesinde sıkça kullanılan istatistiksel yöntemlerden biridir. Özellikle, son yıllarda zaman serisi modellerine zaman içerisinde değişen varyans faktörünün de eklenmesi ile oluşturulan modeller üzerinde çeşitli çalışmalar yürütülmektedir. Bu alanda en çok bilinen ve kullanılan modeller varyansın deterministik bir fonksiyon olarak tanımlandığı ARCH ve GARCH modelleridir. Bu modellere seçenek olarak geliştirilen SV modelinde ise varyans,
more » ... ise varyans, olasılıksal bir fonksiyon olarak tanımlanır. Finansal zaman serilerinde SV modelleri, ARCH modellerine göre daha esnektir. Ancak, SV modeline ilişkin olabilirlik fonksiyonu karmaşık bir yapıya sahip olduğundan parametre tahminlerinin klasik yöntemlerle elde edilmesi zordur. Bu sorun, modelin Bayesci çözümlemesinde MCMC tekniklerinin kullanılması ile ortadan kaldırılmıştır. Bu teknikler sayesinde Bayesci tahminler kolayca hesaplanabilmektedir. Çalışmada, SV modellerinin Bayesci çözümlemesi üzerinde durulacak ve Ocak 1999 / Nisan 2009 ayları arasındaki Euro/TL ve Dolar/TL döviz kuru serileri üzerinden yöntemin bir uygulaması sunulacaktır. Anahtar kelimeler: Olasılıksal oynaklık, MCMC yöntemleri, Gibbs örnekleme algoritması, Bayesci çözümleme Abstract: Time series analysis is generally used to analyze financial assets. Recently, researchers have been studied on time series models with changing variance over time. Two well known models in this area are ARCH and GARCH models where variance is defined as a deterministic function of time. An alternative to ARCH/GARCH is SV model where variance is determined as a stochastic function of time. The SV model provides more flexible modelling of financial time series than ARCH/GARCH models. Since the structure of the likelihood function of SV model is very complicated, it is very hard to estimate the model parameters via the classical approaches. By using Bayesian analysis and MCMC techniques, this problem can be solved. In this study, Bayesian analysis of SV models will be explained and an [...]
doaj:a2c0ecae110a41e08fbda9e8a1e2f8a0 fatcat:ez3uyfmf6naozpnn6pmd7ontae