Assessing the performance of ICESat-2/ATLAS multi-channel photon data for estimating ground topography in forested terrain

Yanqiu Xing, Jiapeng Huang, Armin Gruen, Lei Qin
2020
As a continuation of Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1), the ICESat-2/Advanced Topographic Laser Altimeter System (ATLAS) employs a micro-pulse multi-beam photon counting approach to produce photon data for measuring global terrain. Few studies have assessed the accuracy of different ATLAS channels in retrieving ground topography in forested terrain. This study aims to assess the accuracy of measuring ground topography in forested terrain using different ATLAS channels and
more » ... correlation between laser intensity parameters, laser pointing angle parameters, and elevation error. The accuracy of ground topography measured by the ATLAS footprints is evaluated by comparing the derived Digital Terrain Model (DTM) from the ATL03 (Global Geolocated Photon Data) and ATL08 (Land and Vegetation Height) products with that from the airborne Light Detection And Ranging (LiDAR). Results show that the ATLAS product performed well in the study area at all laser intensities and laser pointing angles, and correlations were found between the ATLAS DTM and airborne LiDAR DTM (coefficient of determination--R 2 = 1.00, root mean squared error--RMSE = 0.75 m). Considering different laser intensities, there is a significant correlation between the tx_pulse_energy parameter and elevation error. With different laser pointing angles, there is no significant correlation between the tx_pulse_skew_est, tx_pulse_width_lower, tx_pulse_width_upper parameters and the elevation error.
doi:10.3929/ethz-b-000426225 fatcat:ewxq5jmbcfhrfbt3noq6yb6sme