Comparative economic viability and environmental impact of PV, diesel and grid systems for large underground water pumping application (55 wells) in Jordan

Mahmoud Hammad, Munzer S. Y. Ebaid
2015 Renewables: Wind, Water, and Solar  
The current work was based on four selected underground water production wells (W25, W29, W34 and W47), out of 55 wells available in total, at Disi water project located south of Jordan to power underground water pumping using a stand-alone solar photovoltaic (PV) system for an operation period of 25 years. The economic viability of large stand-alone solar PV system of 13 MW in total had been analysed through life-cycle cost computation compared with other four possible powering options, i.e.
more » ... ing options, i.e. genset-powered, grid-networked systems, PV-grid and PV-genset. Individual cost banks were identified and studied based on previous practical experiences. Results of the life cycle costs per kWh in the order from the best to worst alternative is the PV (US$0.136 /kWh), PV/grid (0.140), grid (US$0.144 /kWh), PV-genset (0.185), and genset (US$0.239 /kWh), respectively. This proved that the PV solar system is more cost effective and suitable to use over other conventional types of energy for such large power system. Also, payback period analysis was carried out and showed that the PV system is a good option to be recommended highly compared with the other options. Following, the environmental aspects of using clean PV energy were discussed. The resulting savings in CO 2 emission reached 30,000 tons per well throughout the study period, which summed up to about 1.5 million tons of CO 2 for all Disi wells. A briefed risk assessment was conducted for the intended project. Risk levels associated to several hazards were identified as well. The work in this paper can be generalized to other cases worldwide under similar conditions.
doi:10.1186/s40807-015-0012-2 fatcat:egx2sxoijzcx5d6xp3kyckf5le