A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Data-Wise Spatial Regional Consistency Re-Enhancement for Hyperspectral Image Classification
2022
Remote Sensing
Effectively using rich spatial and spectral information is the core issue of hyperspectral image (HSI) classification. The recently proposed Diverse Region-based Convolutional Neural Network (DRCNN) achieves good results by weighted averaging the features extracted from several predefined regions, thus exploring the use of spatial consistency to some extent. However, such feature-wise spatial regional consistency enhancement does not effectively address the issue of wrong classifications at the
doi:10.3390/rs14092227
fatcat:3cdqofhj35egbanfsvnu5f2paq