A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Polyadization of Algebraic Structures
2022
Symmetry
A generalization of the semisimplicity concept for polyadic algebraic structures is proposed. If semisimple structures can be presented as block diagonal matrices (resulting in the Wedderburn decomposition), general forms of polyadic structures are given by block-shift matrices. We combine these forms to get a general shape of semisimple nonderived polyadic structures ("double" decomposition of two kinds). We then introduce the polyadization concept (a "polyadic constructor"), according to
doi:10.3390/sym14091782
fatcat:xnix6h3yqrg2xiafnzjnoswrii