Development of a fiber-based sensor for the molecular detection of pathogens using Legionella as an example [thesis]

Natascha Heinsohn
2022
Fiber-based microfluidics has undergone many innovative developments in recent years, with exciting examples of portable, cost-effective and easy-to-use detection systems already being used in diagnostic and analytical applications. In water samples, Legionella are a serious risk as human pathogens. Infection occurs through inhalation of aerosols containing Legionella cells and can cause severe pneumonia and may even be fatal. In case of Legionella contamination of water-bearing systems or
more » ... nella infection, it is essential to find the source of the contamination as quickly as possible to prevent further infections. In drinking, industrial and wastewater monitoring, the culture-based method is still the most commonly used technique to detect Legionella contamination. In order to improve the laboratory-dependent determination, the long analysis times of 10-14 days as well as the inaccuracy of the measured values in colony forming units (CFU), new innovative ideas are needed. In all areas of application, for example in public, commercial or private facilities, rapid and precise analysis is required, ideally on site. In this PhD thesis, all necessary single steps for a rapid DNA-based detection of Legionella were developed and characterized on a fiber-based miniaturized platform. In the first step, a fast, simple and device-independent chemical lysis of the bacteria and extraction of genomic DNA was established. Subsequently, different materials were investigated with respect to their non-specific DNA retention. Glass fiber filters proved to be particularly suitable, as they allow recovery of the DNA sample from the fiber material in combination with dedicated buffers and exhibit low autofluorescence, which was important for fluorescence-based readout. A fiber-based electrophoresis unit was developed to migrate different oligonucleotides within a fiber matrix by application of an electric field. A particular advantage over lateral flow assays is the targeted movement, even after the fiber is saturated with liquid [...]
doi:10.25932/publishup-56683 fatcat:icrzozj37zadlkti2b4xcdby6y