Lane and Road Marking Detection with a High Resolution Automotive Radar for Automated Driving

Zhaofei Feng
2019
Die Automobilindustrie erlebt gerade einen beispiellosen Wandel, und die Fahrerassistenz und das automatisierte Fahren spielen dabei eine entscheidende Rolle. Automatisiertes Fahren System umfasst haupts\"achlich drei Schritte: Wahrnehmung und Modellierung der Umgebung, Fahrtrichtungsplanung, und Fahrzeugsteuerung. Mit einer guten Wahrnehmung und Modellierung der Umgebung kann ein Fahrzeug Funktionen wie intelligenter Tempomat, Notbremsassistent, Spurwechselassistent, usw. erfolgreich
more » ... ren. F\"ur Fahrfunktionen, die die Fahrpuren erkennen m\"ussen, werden gegenw\"artig ausnahmslos Kamerasensoren eingesetzt. Bei wechselnden Lichtverh\"altnissen, unzureichender Beleuchtung oder bei Sichtbehinderungen z.B. durch Nebel k\"onnen Videokameras aber empfindlich gest\"ort werden. Um diese Nachteile auszugleichen, wird in dieser Doktorarbeit eine \glqq Radar\textendash taugliche\grqq{} Fahrbahnmakierungerkennung entwickelt, mit der das Fahrzeug die Fahrspuren bei allen Lichtverh\"altnissen erkennen kann. Dazu k\"onnen bereits im Fahrzeug verbaute Radare eingesetzt werden. Die heutigen Fahrbahnmarkierungen k\"onnen mit Kamerasensoren sehr gut erfasst werden. Wegen unzureichender R\"uckstreueigenschaften der existierenden Fahrbahnmarkierungen f\"ur Radarwellen werden diese vom Radar nicht erkannt. Um dies zu bewerkstelligen, werden in dieser Arbeit die R\"uckstreueigenschaften von verschiedenen Reflektortypen, sowohl durch Simulationen als auch mit praktischen Messungen, untersucht und ein Reflektortyp vorgeschlagen, der zur Verarbeitung in heutige Fahrbahnmakierungen oder sogar f\"ur direkten Verbau in der Fahrbahn geeignet ist. Ein weiterer Schwerpunkt dieser Doktorarbeit ist der Einsatz von K\"unstliche Intelligenz (KI), um die Fahrspuren auch mit Radar zu detektieren und zu klassifizieren. Die aufgenommenen Radardaten werden mittels semantischer Segmentierung analysiert und Fahrspurverl\"aufe sowie Freifl\"achenerkennung detektiert. Gleichzeitig wird das Potential von KI\textendash tauglichen Umgebungverstehen m [...]
doi:10.5445/ir/1000097528 fatcat:ytwyd65aknachobutnkxv6lmay