北京城市代谢预测研究——基于长短期记忆神经网络模型

刘炳春, LIU Bingchun, 齐鑫, 王庆山, QI Xin, WANG Qingshan
2019 地理科学进展  
The underlying causes of aggravating urban environmental pollution, escalating energy consumption, population overcrowding, and other urban environmental problems are imbalances in urban metabolism. In order to accurately predict the trend of urban metabolism changes in Beijing City, the exosomatic metabolic rate of Beijing from 1980 to 2016 was estimated by the indicators of energy consumption and human activity time, and the degree of urban metabolism was characterized. Based on the results,
more » ... he long short-term memory (LSTM) neural network model was used to predict the exosomatic metabolic rate of various sectors in Beijing from 2017 to 2022. The results show that: 1) the urban metabolic prediction model based on LSTM neural network has high accuracy and can make more accurate prediction on the exosomatic metabolic rate of various sectors in Beijing. 2) From 2017 to 2022, the exosomatic metabolic rate of the primary industry and the overall external energy in Beijing show a downward trend, among which the primary industry reached its peak in 2017, and the exosomatic metabolism rates of the secondary and tertiary industries show an increasing trend. 3) Except for the primary industry, tertiary industry and the overall exosomatic metabolic rate, the temporal perturbation of historical change ranged from small to large. 4) The factors that contribute the most to EMRT are EMR2, and the least are EMR1. This study may provide a theoretical basis and decision-making support for policymakers to optimize urban management plans and enhance urban comprehensive strength.
doi:10.18306/dlkxjz.2019.06.006 fatcat:md4rfgfcjvhehk3wzx2xibhrea