Deep Learning Techniques for Future Intelligent Cross-Media Retrieval [article]

Sadaqat ur Rehman, Muhammad Waqas, Shanshan Tu, Anis Koubaa, Obaid ur Rehman, Jawad Ahmad, Muhammad Hanif, Zhu Han
<span title="2020-07-21">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
With the advancement in technology and the expansion of broadcasting, cross-media retrieval has gained much attention. It plays a significant role in big data applications and consists in searching and finding data from different types of media. In this paper, we provide a novel taxonomy according to the challenges faced by multi-modal deep learning approaches in solving cross-media retrieval, namely: representation, alignment, and translation. These challenges are evaluated on deep learning
more &raquo; ... ) based methods, which are categorized into four main groups: 1) unsupervised methods, 2) supervised methods, 3) pairwise based methods, and 4) rank based methods. Then, we present some well-known cross-media datasets used for retrieval, considering the importance of these datasets in the context in of deep learning based cross-media retrieval approaches. Moreover, we also present an extensive review of the state-of-the-art problems and its corresponding solutions for encouraging deep learning in cross-media retrieval. The fundamental objective of this work is to exploit Deep Neural Networks (DNNs) for bridging the "media gap", and provide researchers and developers with a better understanding of the underlying problems and the potential solutions of deep learning assisted cross-media retrieval. To the best of our knowledge, this is the first comprehensive survey to address cross-media retrieval under deep learning methods.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2008.01191v1">arXiv:2008.01191v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/t63bg55w2vdqjcprzaaidrmprq">fatcat:t63bg55w2vdqjcprzaaidrmprq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200812131609/https://arxiv.org/pdf/2008.01191v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2008.01191v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>