Investigation of Multi-Mesa-Channel-Structured AlGaN/GaN MOSHEMTs with SiO2 Gate Oxide Layer

Jhang-Jie Jian, Hsin-Ying Lee, Edward-Yi Chang, Ching-Ting Lee
2021 Coatings  
In this study, an electron-beam lithography system was employed to pattern 80-nm-wide and 980-nm-spaced multi-mesa-channel for fabricating AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs). Since the structure of multi-mesa-channel could enhance gate control capabilities and reduce the self-heating effect in the channel, the performance of the MOSHEMTs could be obviously improved. The direct current performance metrics of the multi-mesa-channel-structured
more » ... , such as a saturation drain-source current of 929 mA/mm, maximum extrinsic transconductance of 223 mS/mm, and on-resistance of 2.1 Ω-mm, were much better than those of the planar-structured MOSHEMTs. Moreover, the threshold voltage of the multi-mesa-channel-structured MOSHEMTs shifted toward positive voltage from −2.6 to −0.6 V, which was attributed to the better gate control capability. Moreover, the multi-mesa-channel-structured MOSHEMTs also had superior high-frequency and low-frequency noise performance. A low Hooge's coefficient of 1.17 × 10−6 was obtained.
doi:10.3390/coatings11121494 fatcat:mo5xrhrkl5ga7e7sast7rbwcey