A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
A Malicious Webpage Detection Method Based on Graph Convolutional Network
2022
Mathematics
In recent years, with the rapid development of the Internet and information technology, video websites, shopping websites, and other portals have grown rapidly. However, malicious webpages can disguise themselves as benign websites and steal users' private information, which seriously threatens network security. Current detection methods for malicious webpages do not fully utilize the syntactic and semantic information in the web source code. In this paper, we propose a GCN-based malicious
doi:10.3390/math10193496
fatcat:rfmjunxxcjfufjdytevkv3yqwm