Classification of Electricity Consumption Behavior Based on Improved K-Means and LSTM

Hua Li, Bo Hu, Yubo Liu, Bo Yang, Xuefang Liu, Guangdi Li, Zhenyu Wang, Bowen Zhou
2021 Applied Sciences  
Power big data-based artificial intelligence or data mining methods, which can be used to analyze electricity consumption behavior, have been widely applied to provide targeted marketing services for electricity consumers. However, the traditional clustering algorithm has difficulty in judging new electricity consumption patterns. Deep neural networks usually need large amounts of labeled data. However, there are few comparable electricity consumption features or basic data, and the labeled
more » ... cannot meet the actual needs. Therefore, an intelligent classification framework for electricity consumption behavior based on an improved k-means and long short-term memory (LSTM) is proposed, which not only extracts features effectively, but also establishes a mapping relationship between unlabeled electricity consumption behavior characteristics and user types. The features can be labeled to train the deep neural network to judge the electricity consumption behavior of new users. Firstly, nine typical characteristics were selected from aspects including electricity price sensitivity and load fluctuation rate. Secondly, the k value and initial clustering centers of the k-means algorithm were optimized. Thirdly, the users were labelled based on the clustering results, together with the features, and a dataset was formed, which was input into LSTM to train the classification model. Finally, the analysis of users in Shenyang, China, showed the results based on the proposed method were consistent with the actual situation. Moreover, compared to other methods, the efficiency and accuracy were higher.
doi:10.3390/app11167625 fatcat:77vq2xdhajfs5blyvsozdqawpa