Breast Cancer Diagnosis Using Optimized Attribute Division in Modular Neural Networks

Rahul Kala, Anupam Shukla, Ritu Tiwari
2011 Journal of Information Technology Research  
The complexity of problems has led to a shift toward the use of modular neural networks in place of traditional neural networks. The number of inputs to neural networks must be kept within manageable limits to escape from the curse of dimensionality. Attribute division is a novel concept to reduce the problem dimensionality without losing information. In this paper, the authors use Genetic Algorithms to determine the optimal distribution of the parameters to the various modules of the modular
more » ... ural network. The attribute set is divided into the various modules. Each module computes the output using its own list of attributes. The individual results are then integrated by an integrator. This framework is used for the diagnosis of breast cancer. Experimental results show that optimal distribution strategy exceeds the well-known methods for the diagnosis of the disease.
doi:10.4018/jitr.2011010103 fatcat:jcmk2estqjafjbhqwcqjxs7ahi