A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
A Proof of Symmetry of the Power Sum Polynomials Using a Novel Bernoulli Number Identity
2017
Journal of Integer Sequences
unpublished
The problem of finding formulas for sums of powers of natural numbers has been of interest to mathematicians for many centuries. Among these is Faulhaber's well-known formula expressing the power sums as polynomials whose coefficients involve Bernoulli numbers. In this paper we give an elementary proof that the sum of p-th powers of the first n natural numbers can be expressed as a polynomial in n of degree p + 1. We also prove a novel identity involving Bernoulli numbers and use it to show symmetry of this polynomial.
fatcat:p5zzpo4gmvcgtheypf7qomn45y