Joint-Modal Label Denoising for Weakly-Supervised Audio-Visual Video Parsing [article]

Haoyue Cheng, Zhaoyang Liu, Hang Zhou, Chen Qian, Wayne Wu, Limin Wang
2022 arXiv   pre-print
This paper focuses on the weakly-supervised audio-visual video parsing task, which aims to recognize all events belonging to each modality and localize their temporal boundaries. This task is challenging because only overall labels indicating the video events are provided for training. However, an event might be labeled but not appear in one of the modalities, which results in a modality-specific noisy label problem. Motivated by two observations that networks tend to learn clean samples first
more » ... nd that a labeled event would appear in at least one modality, we propose a training strategy to identify and remove modality-specific noisy labels dynamically. Specifically, we sort the losses of all instances within a mini-batch individually in each modality, then select noisy samples according to relationships between intra-modal and inter-modal losses. Besides, we also propose a simple but valid noise ratio estimation method by calculating the proportion of instances whose confidence is below a preset threshold. Our method makes large improvements over the previous state of the arts (e.g., from 60.0% to 63.8% in segment-level visual metric), which demonstrates the effectiveness of our approach.
arXiv:2204.11573v2 fatcat:vxvw2bpb25g2tetzv5zxfdh4c4