Magnetic Resonance Assessment of Effective Confinement Anisotropy with Orientationally-Averaged Single and Double Diffusion Encoding [chapter]

Cem Yolcu, Magnus Herberthson, Carl-Fredrik Westin, Evren Özarslan
2021 Mathematics and Visualization  
AbstractPorous or biological materials comprise a multitude of micro-domains containing water. Diffusion-weighted magnetic resonance measurements are sensitive to the anisotropy of the thermal motion of such water. This anisotropy can be due to the domain shape, as well as the (lack of) dispersion in their orientations. Averaging over measurements that span all orientations is a trick to suppress the latter, thereby untangling it from the influence of the domains' anisotropy on the signal.
more » ... we consider domains whose anisotropy is modeled as being the result of a Hookean (spring) force, which has the advantage of having a Gaussian diffusion propagator while still confining the spatial range for the diffusing particles. In fact, this confinement model is the effective model of restricted diffusion when diffusion is encoded via gradients of long durations, making the model relevant to a broad range of studies aiming to characterize porous media with microscopic subdomains. In this study, analytical expressions for the powder-averaged signal under this assumption are given for so-called single and double diffusion encoding schemes, which sensitize the MR signal to the diffusive displacement of particles in, respectively, one or two consecutive time intervals. The signal for one-dimensional diffusion is shown to exhibit power-law dependence on the gradient strength while its coefficient bears signatures of restricted diffusion.
doi:10.1007/978-3-030-56215-1_10 fatcat:2fdklswx3bedvbivdp6fj4gokq