Supervised learning methods in modeling of CD4+ T cell heterogeneity

Pinyi Lu, Vida Abedi, Yongguo Mei, Raquel Hontecillas, Stefan Hoops, Adria Carbo, Josep Bassaganya-Riera
2015 BioData Mining  
Modeling of the immune systema highly non-linear and complex systemrequires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells. Each cell type is highly diverse and can be further differentiated into subsets with unique and overlapping functions. For example, CD4+ T cells can be differentiated into Th1, Th2, Th17, Th9,
more » ... 2, Treg, Tfh, as well as Tr1. Each subset plays different roles in the immune system. To study molecular mechanisms of cell differentiation, computational systems biology approaches can be used to represent these processes; however, the latter often requires building complex intracellular signaling models with a large number of equations to accurately represent intracellular pathways and biochemical reactions. Furthermore, studying the immune system entails integration of complex processes which occur at different time and space scales. Methods: This study presents and compares four supervised learning methods for modeling CD4+ T cell differentiation: Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), and Linear Regression (LR). Application of supervised learning methods could reduce the complexity of Ordinary Differential Equations (ODEs)-based intracellular models by only focusing on the input and output cytokine concentrations. In addition, this modeling framework can be efficiently integrated into multiscale models. Results: Our results demonstrate that ANN and RF outperform the other two methods. Furthermore, ANN and RF have comparable performance when applied to in silico data with and without added noise. The trained models were also able to reproduce dynamic behavior when applied to experimental data; in four out of five cases, model predictions based on ANN and RF correctly predicted the outcome of the system. Finally, the running time of different methods was compared, which confirms that ANN is considerably faster than RF. Conclusions: Using machine learning as opposed to ODE-based method reduces the computational complexity of the system and allows one to gain a deeper understanding of the complex interplay between the different related entities.
doi:10.1186/s13040-015-0060-6 pmid:26339293 pmcid:PMC4559362 fatcat:hdb4f4jwqzdapebhl6vhrnycta