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Abstract

Understanding the relationship between the genotypes and phenotypes of
individuals is key for identifying genetic variants responsible for disease and
developing successful therapeutic strategies. Mapping the phenotypic effects
of individual genetic variants and their combinations in human populations
presents numerous practical and statistical challenges. However, model or-
ganisms, such as the budding yeast Saccharomyces cerevisiae, provide an in-
credible set of molecular tools and advanced technologies that should be
able to efficiently perform this task. In particular, large-scale genetic in-
teraction screens in yeast and other model systems have revealed common
properties of genetic interaction networks, many of which appear to be main-
tained over extensive evolutionary distances. Indeed, despite relatively low
conservation of individual genes and their pairwise interactions, the overall
topology of genetic interaction networks and the connections between broad
biological processes may be similar in most organisms. Taking advantage of
these general principles should provide a fundamental basis for mapping and
predicting genetic interaction networks in humans.
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INTRODUCTION

In an era of high-throughput whole-genome sequencing, one of the biggest challenges in genetics
remains our understanding of the relationship between the genotypes and phenotypes of individ-
uals. Mendelian disorders, caused by single-gene mutations, account for only a small fraction of
rare human diseases (see OMIM; http://www.ncbi.nlm.nih.gov/omim), and the genetic causes
of more common and complex conditions remain largely unknown. The difficulty in understand-
ing common diseases stems from the complexity of the human genome: Each individual carries
∼4 million genetic variants and polymorphisms (37, 52), the overwhelming majority of which can-
not be pinpointed as the single cause for a given phenotype. Instead, the effects of genetic variants
may combine with one another both additively and synergistically, and each variant’s contribution
to a quantitative trait or disease risk could depend on the genotypes of dozens of other variants.
Interactions between genetic variants, along with the environmental conditions, are likely to play
a major role in determining the phenotype that arises from a given genotype and may provide the
key to explaining the missing heritability of complex traits (104).

The study of genetic interactions in human populations is extremely challenging owing to the
difficulty of isolating the effect of each individual variant from the effects of thousands of other
variants carried by the same genome. As noted by Lewontin (61) almost 40 years ago, “there is
simply no way to make a large number of individuals identically homozygous or heterozygous at
one locus while keeping the rest of the genome segregating at random” (p. 42). Highly controlled
genetic analysis, however, can be performed in model organisms such as the budding yeast Saccha-
romyces cerevisiae, in which systematic mutagenesis projects and automated genetic techniques have
enabled researchers to analyze the effects of alleles alone and in combination. Here, we summarize
the state of the art of genetic interaction research in various experimental systems and describe
how the lessons learned from model organisms grown in defined laboratory environments can
help disentangle the complexity of genetic networks in natural populations, including humans.

DEFINING GENETIC INTERACTIONS

A genetic interaction occurs when an unexpected phenotype arises from the combination of two or
more genetic variants. For example, two mutations that cause no fitness defect individually can pro-
duce an inviable double mutant, resulting in a genetic interaction known as synthetic lethality (14,
73, 92) (see below). More generally, a genetic interaction can be defined as the difference between
an experimentally measured double-mutant phenotype and an expected double-mutant pheno-
type, the latter of which is predicted from the combination of the single-mutant effects, assuming
the mutations act independently. However, predicting how independent mutations combine is not
straightforward. For example, in an additive model, each mutation would be expected to contribute
additively to the phenotype, such that, in the absence of genetic interaction, the double-mutant
phenotype would equal the sum of the two single-mutant phenotypes (Figure 1a). Alternatively, a
multiplicative model would suggest that each mutation alters the phenotype by a specific fraction,
such that, in the absence of genetic interaction, the double-mutant phenotype would equal the
product of the two single-mutant phenotypes (Figure 1a).

Which of these two models is more appropriate to describe gene-gene relationships has been
long debated among geneticists and remains an unresolved question (66, 77). In principle, the
choice between them should depend on the phenotype under consideration and the specific mea-
surement scale, because, for example, two phenotypes may combine multiplicatively when mea-
sured on a linear scale but additively after a logarithmic transformation. In the case of fitness,
for instance, the multiplicative model is preferred owing to evolutionary considerations: When
a population has reached equilibrium, such that the frequencies of a set of alleles have stabilized
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and do not change over time, it will remain at equilibrium only if the fitness effects of these alleles
combine multiplicatively (34, 99). Furthermore, the additive model would often predict negative
fitness values for mutant combinations with fitness defects greater than 50%, and therefore it may
not be relevant for some fitness-based measurement of genetic interactions. In practice, however,
the two models often yield similar results when examining relatively healthy mutants that exhibit
subtle fitness defects, which represent the vast majority of single mutants in yeast and likely in
other organisms as well (7, 13, 21, 25, 46, 100). As a result, although we must be attentive to poten-
tial exceptions, the most extreme genetic interactions would be detected using either model, and
the general topology of the genetic interaction network would likely remain largely unaffected.

NEGATIVE AND POSITIVE GENETIC INTERACTIONS

Based on the difference between the observed and expected double-mutant phenotypes, genetic
interactions can be broadly divided into two major classes, which we refer to as negative and positive
genetic interactions. Negative genetic interactions describe double mutants whose phenotype is
stronger than expected (66, 77) (Figure 1b). The most extreme example of a negative genetic
interaction for fitness is synthetic lethality, in which the combination of two mutations, each of
which causes little or no growth defect on its own, results in an inviable phenotype (14, 73, 92).
Synthetic lethality and its milder variant, synthetic sickness (slow growth), often involve genes with
at least partially overlapping functions that can compensate for each other’s absence to support cell
viability (11, 42, 73, 92) (Figure 1b). For example, many members of the DNA damage-sensing
and repair pathways are synthetic lethal with one another (33, 43, 75), possibly reflecting the
importance of compensatory systems for maintaining the integrity of the genetic material.

Genes acting in the same linear pathway may also exhibit synthetic lethality if the pathway is
essential and each mutation has a partial inhibitory (hypomorphic) effect on pathway activity (3, 7,
42) (Figure 1b). For example, the discovery of synthetic lethal interactions among conditional par-
tial loss-of-function mutations in a group of essential SEC genes helped to elucidate the structure
of the post-Golgi secretory pathway and its relationship to other secretion-related processes (36).

Positive genetic interactions define double mutants whose phenotype is less severe than ex-
pected based on single-mutant phenotypes (30, 66, 87) (Figure 1c,d). For example, genetic sup-
pression is a positive genetic interaction that occurs when a mutation in one gene rescues the
fitness defect associated with a mutation in another gene, such that the double mutant’s fitness is
greater than that of the sickest single mutant (Figure 1c). Genetic suppression between loss-of-
function mutations can link components of a given pathway to genes encoding negative regulators
of the same pathway (7) (Figure 1c). For example, growth defects associated with mutations in
the GCD1 locus, which encodes a negative regulator of amino acid biosynthesis upon starvation,
are suppressed by mutations in the GCN4 locus, a tightly regulated transcriptional activator act-
ing downstream of Gcd1 (47). The suppressor may also carry a gain-of-function mutation that
renders the pathway independent of an upstream component (Figure 1c). An example is the yeast
pheromone response pathway, which is normally triggered by the binding of a pheromone to
a cell surface receptor, leading to activation of the coupled heterotrimeric G protein composed
of Gpa1, Ste18, and Ste4 (68). Constitutive pathway inactivation, observed in ste4 null mutants,
can be suppressed by dominant mutations in STE11, which encodes a protein kinase acting in
downstream signal transmission (86).

Another type of positive interaction, known as a coequal interaction, often connects genes
encoding members of the same nonessential protein complex or linear pathway (53, 55, 83, 87,
88, 96) (Figure 1d). In a coequal interaction, the phenotypes of the single mutants and the cor-
responding double mutant are quantitatively indistinguishable, presumably because the observed
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phenotype is due to the complete loss of function of the pathway or protein complex, which can
be achieved by removing any of its components, individually or in pairs (Figure 1d). A systematic
analysis of 26 genes involved in DNA damage repair showed that 9 out of 10 coequal interactions
corresponded to physical interactions among the encoded proteins, including all 4 members of
the well-characterized SHU complex (87).

MAPPING GENETIC INTERACTIONS IN YEAST

Owing to its facile genetics, the budding yeast S. cerevisiae has catalyzed the development of nu-
merous genomic technologies, including methods for large-scale mapping of genetic interactions,
and has played a primary role in deciphering the basic functional wiring diagram of the eukaryotic
cell (12). Specifically, genome-scale mapping of genetic interactions requires three fundamental
tools. First, large collections of mutant strains, carrying either gain- or loss-of-function alleles, are
required to systematically perturb gene activity. Second, high-throughput methodologies must be
available for combining mutations in a rapid, accurate, and comprehensive manner. Third, a phe-
notypic readout that is easily assayed in a high-throughput and quantitative manner is necessary
to identify and measure genetic interactions. Below, we describe all three of these experimental
components as they pertain to mapping genetic interactions in S. cerevisiae.

Mutant Strain Libraries

The yeast deletion collection is a library of mutant strains in which each known or suspected
open reading frame has been deleted and replaced with a dominant drug-resistance marker (39)
(Figure 2a). This collection contains deletion strains for ∼4,800 nonessential genes, available
as haploids or homozygous diploids, as well as ∼1,000 essential genes, which are required for
viability under regular laboratory growth conditions and are maintained as heterozygous diploids.
Molecular tags or bar codes (i.e., strain-specific 20-base-pair DNA sequences) were introduced
at both ends of the deletion cassette and act as unique mutant strain identifiers (Figure 2a). The
presence of molecular bar codes enables assessment of mutant fitness within a pooled population
using a bar-code microarray (40) or, more recently, high-throughput bar-code sequencing (85).

To enable the analysis of essential genes, the yeast community has also developed additional
libraries of conditional mutants that complement the nonessential deletion collection. For
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Defining genetic interactions. (a) Additive and multiplicative models of genetic interactions. According to the additive model, each of
the two mutations (a and b) subtracts a certain quantity from the phenotype of the wild-type strain (WT = 1, a = 1 − 0.3, b = 1 −
0.5), such that, in the absence of genetic interaction, the expected double-mutant phenotype equals the sum of the two single-mutant
phenotypes (ab = 1 − 0.3 − 0.5 = 0.2). The multiplicative model, in contrast, predicts that each mutation changes the phenotype by a
specific fraction (WT = 1, a = 1 × 0.7, b = 1 × 0.5), such that, in the absence of genetic interaction, the expected double-mutant
phenotype equals the product of the two single-mutant phenotypes (ab = 1 × 0.7 × 0.5 = 0.35). (b) Example of a negative synthetic
lethal genetic interaction, whereby the observed fitness of the double mutant (ab = 0.0) is lower than expected (ab = 0.35). Synthetic
lethal/sick genetic interactions often connect nonessential genes sharing compensating or partially overlapping roles in an essential
biological pathway. In addition, synthetic lethality can occur between hypomorphic (partially functional) mutations of essential pathway
components. (c) Example of a positive suppressive genetic interaction, whereby the observed fitness of the double mutant (ab = 0.7) is
greater than expected (ab = 0.35) and greater than the sickest of the single mutants (b = 0.5). Genetic suppression among
loss-of-function mutations can link genes to their negative regulators. Gain-of-function suppression can also occur between upstream
and downstream components of the same pathway. (d ) Example of a positive coequal genetic interaction, whereby the fitness
phenotypes of the two single mutants and the double mutant are quantitatively indistinguishable (a = b = ab = 0.7). Coequal genetic
interactions can occur between members of the same nonessential pathway or protein complex, such that the loss of one or two
components of the pathway has the same effect on pathway activity.
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Figure 2
Yeast mutant strain libraries for large-scale mapping of genetic interactions. (a) The genome-wide deletion mutant collection contains
∼6,000 mutant strains in which every open reading frame (e.g., YFG1) has been deleted and replaced with a dominant drug-resistance
cassette (kanMX). Molecular tags or bar codes (UPTAG and DOWNTAG), consisting of strain-specific 20-base-pair DNA sequences,
flank the deletion cassette and act as unique mutant strain identifiers. (b) In the collection of temperature-sensitive alleles of essential
genes, each strain carries a point mutation (asterisk) linked to a selectable marker (kanMX). Point mutations alter protein stability at
high temperatures and reduce protein function. (c) In the Tet collection, essential genes are expressed under the control of a
tetracycline-regulated promoter (Tet response element), which normally activates gene expression in response to binding of the
tetracycline transactivator protein (tTA). Tetracycline and its analogs (e.g., doxycycline), however, sequester tTA and prevent its
binding to the Tet response element, thus turning off the expression of the downstream gene. (d ) In the DAmP (decreased abundance
by mRNA perturbation) collection, the selectable marker (kanMX) has been inserted in the 3′ untranslated region (UTR) of the gene,
thus destabilizing its mRNA transcript and generating a hypomorphic phenotype.

example, temperature-sensitive alleles, in which a point mutation in the gene coding sequence
alters protein stability at high temperatures and substantially reduces protein function, are
available for ∼65% of all essential genes (10, 62) (Figure 2b). Conditional alleles of essential
genes have also been generated by expressing the genes from a tetracycline-regulated promoter,
which turns off gene expression in the presence of the tetracycline analog doxycycline (22, 71)
(Figure 2c). In addition, hypomorphic (partially functional) alleles with destabilized mRNA
transcripts have been constructed systematically through the insertion of a selectable marker to
displace the 3′ untranslated region of each gene (13, 81) (Figure 2d).

Genetic Interaction Mapping Technologies

The availability of large-scale mutant strain collections prompted the development of high-
throughput technologies for combining mutations and studying genetic interactions. The
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synthetic genetic array (SGA) was the first approach to automate classical yeast genetics and
enable systematic construction of double mutants from ordered arrays of single mutants (6, 92)
(see Figure 3). Methods complementary to SGA have also been developed; for example, diploid
synthetic lethal analysis by microarray (dSLAM) takes advantage of the unique molecular bar
codes associated with each deletion mutant to map synthetic lethal interactions within a mixed
population of double mutants (64, 75, 76) (Figure 3). In this method, a pooled set of heterozygous
deletion strains is mass transformed with a marked query mutation. Through the same selection
steps as in SGA, double-mutant haploids are selected and their relative abundance is quantified
by amplifying strain-specific bar codes and measuring their microarray hybridization intensities
compared with a nonselected control pool (Figure 3).

In an SGA/dSLAM hybrid approach called genetic interaction mapping (GIM), double mu-
tants are generated by mating and sporulation in a manner analogous to SGA; however, similarly
to dSLAM, every step is performed in a pooled culture containing all yeast nonessential dele-
tion strains (23) (Figure 3). Competitive growth of double-mutant meiotic progeny is followed
by identification of quantitative genetic interactions via comparison of bar-code hybridization
intensities between double mutants and a reference population.

Phenotypes

All three approaches for mapping genetic interactions in yeast (SGA, dSLAM, and GIM) use cellu-
lar fitness as the primary phenotype. Fitness, defined broadly as growth relative to a reference strain
in a given laboratory environment, is an excellent phenotypic readout because it can be measured
easily and quantitatively and is amenable to high-throughput applications. Different method-
ologies measure fitness in different ways. In SGA, single- and double-mutant fitness estimates
are obtained from measurements of colony sizes. High-density arrays of double mutants grown
on agar plates are digitally photographed and analyzed using an image-processing algorithm that
identifies the colonies and measures their areas in pixel units (6). dSLAM and GIM estimate fitness
by measuring the hybridization intensities of mutant-associated bar codes, which are indicative of
the relative abundance of double mutants in a population (23, 64, 75). The relative abundance of
differently labeled mutant strains has also been quantified using fluorescence-activated cell sort-
ing (13, 24). On a smaller scale, fitness has been measured by monitoring the optical density of a
growing yeast culture over time and calculating its exponential growth rate, duration of lag phase,
and saturation level (87).

Despite all the available measures of fitness, it is becoming increasingly evident that more-
specific phenotypes are also necessary to obtain a complete picture of the cell’s functional organi-
zation. An early indication came from the fact that ∼50% of yeast deletion mutants with no visible
fitness defect show abnormal cell morphology (74), suggesting that growth data alone are not
sufficient to capture every aspect of a gene’s functional role in the cell. Fortunately, technological
advances in high-throughput microscopy and image-processing tools have made the analysis of
cellular phenotypes achievable on a genome-wide scale and supported their integration with com-
binatorial genetic methods (51, 72, 74, 98). For example, high-content screening coupled with
SGA enabled the investigation of mitotic spindle morphogenesis in single and double mutants
and generated a genetic interaction network four times larger than the one derived from a similar
fitness-based analysis (98).

THE YEAST GENETIC INTERACTION NETWORK

Despite being a relatively general phenotype, fitness has proved to be a powerful tool for mapping
functional connections between genes. In one of its first applications, SGA was used to cross
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132 query strains to the complete array of ∼4,800 haploid deletion mutants, resulting in a large-
scale genetic interaction network consisting of ∼1,000 genes and ∼4,000 synthetic lethal/sick
interactions (93). This network showed that synthetic lethality, despite being generally rare, tends
to occur between genes that share similar biological functions and thus can be used to uncover
novel functional relationships on a global scale (93).

To exploit this property, investigators have applied SGA to subsets of functionally related genes
in order to optimize the recovery of genetic interactions in a smaller number of experiments. In this
targeted approach, select query strains were crossed to arrays composed of several hundred deletion
mutants known to be involved in specific biological processes, such as vesicle-mediated transport
(81), chromosome biology (20), RNA processing (101), phosphorylation-mediated signaling (35),
transcription (103), plasma membrane–related processes (1), and mitochondrial functions (48).
Although this approach is useful for dissecting the inner workings of well-defined processes, tar-
geted genetic interaction studies fail to uncover connections between diverse biological processes
and result in a potentially biased view of the global topology of the genetic interaction network.
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An unbiased examination of genetic interactions was made feasible by the development of next-
generation robotics, which dramatically increased the speed and throughput of SGA experiments.
These technological advances were coupled with novel computational methods that enabled accu-
rate processing of colony size data and extraction of high-quality quantitative genetic interactions
(7, 21). As a result, a large-scale SGA study tested 1,712 query genes, including 334 conditional
or hypomorphic alleles of essential genes, against the complete nonessential deletion collection,
resulting in a total of ∼5.4 million gene pairs spanning all biological processes. This global genetic
interaction data set, covering ∼30% of all possible pairwise gene combinations in yeast, generated
∼170,000 interactions (∼110,000 negative and ∼60,000 positive), providing an unprecedented
view of the cell’s functional organization (21) (Figure 4).

Early analyses of genetic interactions showed that a gene’s genetic interaction profile (i.e., the
set of genetic interactions associated with that gene) represents an informative phenotypic signa-
ture that can be used to assign function to uncharacterized genes and identify members of func-
tional modules and specific pathways (93, 102) (Figure 5a). For example, members of a pathway
or protein complex tend to be synthetic lethal with the same genes from other pathways or protein
complexes (93). Furthermore, common patterns of synthetic lethality are often more predictive
of comembership in a protein complex than the direct genetic interactions themselves (102).

The availability of a large genome-wide data set has allowed the expansion of genetic interac-
tion profile analysis to a global scale. Using the collection of ∼5.4 million gene pairs, Costanzo
et al. (21) constructed a genetic profile similarity network in which genes with similar genetic
interaction profiles were tightly connected and positioned close to one another, and genes sharing
fewer genetic interactions were positioned farther away from one other (Figure 4). The resulting
network revealed that genes acting within the same broad biological process are organized into
large functional clusters and that the relative spatial positioning of the clusters is indicative of the
functional interdependencies between the corresponding biological processes (21) (Figure 4a).
More-specific functional modules, such as individual molecular pathways and protein complexes,
could also be discerned through inspection of the global genetic network at higher magnification
(21) (Figure 4b–d ). This analysis showed that the wealth of functional information concealed

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Genetic interaction mapping technologies. In a typical synthetic genetic array (SGA) screen, a MATα

mutant strain carrying a query mutation marked with the dominant drug-resistance marker natMX4 ( filled
black circle) is crossed to an array of ∼4,800 viable MATa deletion mutants or conditional alleles of essential
genes. Each array mutation is marked with a kanMX4 drug-resistance cassette ( filled red, green, yellow, and
blue circles). Following mating, diploid selection, and sporulation, the meiotic progeny is robotically
replica-pinned onto a series of selective media, enabling precise stepwise selection of double-mutant cells (6).
As a result, an SGA screen produces an ordered array of double mutants, which can be scored for fitness
through measurement of their colony size or assessed for a variety of other quantitative phenotypes. The
diploid synthetic lethal analysis by microarray (dSLAM) and genetic interaction mapping (GIM) methods
differ in their approaches to constructing a pool of double heterozygous diploid mutants, but are similar in
the subsequent selection steps and phenotypic readout. In dSLAM, a query mutation ( filled black circle) linked
to the URA3 selectable marker is introduced into the pool of haploid-convertible heterozygous diploid
strains by high-efficiency integrative transformation. In GIM, a MATα haploid query strain in which a
specific genomic locus is replaced with a natMX4 marker ( filled black circle) is mated with a pool of viable
MATa deletion mutants. Haploid double-mutant pools are selected after sporulation, and genomic DNA
samples are isolated and used as templates for polymerase chain reaction amplification of the tags, during
which they are labeled with fluorescent dyes. Competitive microarray hybridization of double-mutant and
control single-mutant tags enables quantitative assessment of the abundance of double mutants in the pooled
culture and therefore allows the identification of synthetic lethal/sick genetic interactions.
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within genetic networks at varying levels of resolution has the potential to assign a functional role
to every gene in the genome as long as the gene responds to the tested experimental condition by
showing a fitness defect in a range of genetic backgrounds.

YEAST AS A TOOL FOR UNDERSTANDING GENETIC
INTERACTIONS IN COMPLEX SYSTEMS

The global yeast genetic network has revealed both the organization and the complexity of the
constellation of genetic interactions (Figure 4). Estimates based on the current genetic interaction
network indicate that a complete S. cerevisiae genetic interaction network may consist of as many as
∼200,000 extreme synthetic lethal/sick gene pairs (22, 93) and a smaller but comparable number
of positive genetic interactions (21). These numbers clearly indicate that genetic interactions may
significantly complicate the task of mapping genotypes to phenotypes in natural populations (45).
For example, although in yeast there are ∼1,000 single-gene perturbations that result in a lethal
phenotype (i.e., ∼1,000 essential genes), there seem to be at least ∼200-fold more digenic mutant
combinations that result in the same phenotypic outcome. Moreover, the genetic structure of
most phenotypes likely extends well beyond single-gene contributions or pairwise interactions
and is governed by intricate networks involving multiple genomic loci. For example, most cases of
conditional essentiality, in which a gene is essential in one yeast laboratory strain but completely
dispensable in another, appear to be modulated by at least four modifiers (29). Similarly, yeast
chemical-resistance traits are regulated by as many as 40–50 loci (32), with variation depending on
the strain’s genetic background and the trait under examination (31). These findings indicate that
even an organism as simple as yeast has an intricate genetic architecture, and systematic mapping
of pairwise genetic interactions may be revealing only the tip of the iceberg of its complex genetics.

Because the genetic variability of an organism increases with genome size, understanding the
contribution of genetic interactions to the genotype-phenotype problem in higher eukaryotes
represents an even more daunting task. Nevertheless, accomplishing this task should be facilitated
by detailed examination of the general properties of the yeast genetic interaction network. For
example, by integrating genetic interactions with other types of molecular data, we may identify
rules governing the interdependence of genes in various cellular contexts and be able to predict
which types of genes are more likely to exhibit genetic interactions in other organisms. Similarly,
predictions can be made by comparing partial genetic networks in different model organisms
and identifying rules governing conservation of genetic interactions. In the following sections,
we review some of the properties of the yeast genetic interaction network that may facilitate the
construction of similar maps in other organisms.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
A functional map of the cell. (a) Correlation-based network connecting genes with similar genetic interaction profiles. Genetic
interaction profile similarities were measured for all tested gene pairs using Pearson correlation coefficients. Genes (nodes) whose profile
similarity exceeded a Pearson correlation coefficient of 0.2 were connected (lines) and positioned proximal to each other in
two-dimensional space, using an automatic force-directed network layout. (b,c) Magnifications of the functional map, resolving cellular
processes with increased specificity. Node colors correspond to specific biological processes; note that the color schemes are unique to
each panel. (d ) A further magnification of panel b, revealing modules corresponding to specific pathways and complexes connected by
negative and positive genetic interactions. Subsets of genes belonging to the amino acid biosynthesis and uptake region of the network
were selected. Nonessential and essential genes (circles and diamonds, respectively) are represented as nodes grouped according to profile
similarity; lines represent negative (red ) and positive ( green) genetic interactions. Characterized genes are in green, and genes with
previously unknown function are in blue. Adapted from Reference 21.
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Figure 5
Modularity of genetic interaction networks. (a) Diagram illustrating that genes encoding members of the
same pathway or protein complex tend to have the same genetic interaction partners. In this example, genes
A, B, and C, acting in the same nonessential pathway, are consistently synthetic lethal with genes X, Y, and
Z, acting in a parallel pathway. (b) Patterns of negative (red ) and positive ( green) genetic interactions,
revealing an ordered yet incredibly complex structure. Negative and positive genetic interactions occur both
within and between functional modules, such as molecular pathways and protein complexes. The similarity
of the genetic interaction profiles, which measures the degree to which two genes share genetic interaction
partners, represents a powerful tool for grouping genes according to their functional roles. (c) Network
representation of genetic interactions from panel b, illustrating the modularity of genetic interactions and
their relationship to protein-protein interactions (dashed lines). Adapted from Reference 26.
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PROPERTIES OF THE YEAST GENETIC INTERACTION NETWORK

Monochromaticity

The modular behavior of the genetic interaction network stems from the fact that genetic
interactions tend to be shared by all members of a given functional module. As observed in
early data on synthetic lethality, genes acting in the same pathway or protein complex tend to
be synthetic lethal with the same set of genes in a parallel or compensating pathway/protein
complex (93) (Figure 5a). Similarly, all members of a given nonessential protein complex often
share positive genetic interactions with one another, whereas members of essential protein
complexes share negative genetic interactions (3, 7) (Figure 5b–c). These properties of genetic
interaction networks are referred to as between-pathway and within-pathway monochromaticity,
respectively, to indicate that the same type or “color” of genetic interactions connects members
of the same functional group (Figure 5b–c). Since its original introduction in a theoretical study
(82), monochromaticity has been extensively observed in experimental data (7, 21, 50, 70).

A systematic analysis of the yeast genetic interaction network showed that at least 70% of
negative genetic interactions belong to monochromatic modules composed of nine or more gene
pairs (8). Most of these interactions (∼85%) span different sets of genes, consistent with the
between-pathway model of negative genetic interactions (8) (Figure 5). A smaller fraction (∼15%)
connect genes within the same set and form clique-like structures. These within-pathway negative
genetic interactions often correspond to groups of coregulated genes (8) or essential protein
complexes (3, 7, 56), presumably because perturbation of at least two nonessential components is
necessary to destabilize the function of an essential protein complex.

Among positive genetic interactions, only ∼20% can be assigned to monochromatic modules
composed of nine or more gene pairs (8), which possibly reflects a greater challenge associated
with the experimental detection of positive interactions and the resulting higher false-positive
and false-negative rates (7, 21). As was also observed in more focused studies (20, 87), a subset
(∼20%) of positive interactions assigned to monochromatic modules connected genes within the
same module and were enriched for members of nonessential protein complexes (8) (Figure 5b–
c). However, large-scale genetic interaction studies revealed that the vast majority of positive
interactions (∼80%) spanned between-pathway structures, suggesting that their role in connecting
functionally distant processes is highly prevalent (8). Consistent with this hypothesis, analysis
of a particular subtype of positive interaction, genetic suppression, showed that mutations in
apparently very distant pathways can rescue one another’s phenotypes (7). For example, fitness
defects and sensitivity to UV radiation associated with DNA polymerase delta (Polδ) mutants can
be suppressed by disrupting members of the conserved oligomeric Golgi (COG) complex, which
is involved in maintaining the integrity and function of the Golgi apparatus (7). Understanding
the mechanistic link between seemingly distant biological processes connected by positive genetic
interactions will likely open a new perspective on the functional organization of the eukaryotic cell.

The Relationship Between Physical and Genetic Networks

Negative and positive within-pathway modules are enriched for protein complex structures con-
taining essential and nonessential components, respectively (7, 8). However, the general overlap
between the genetic and physical networks is fairly modest: Only 10–20% of protein-protein in-
teraction pairs share a genetic interaction, and, vice versa, 0.9% of genetic interactions connect
protein pairs that also physically interact (21). This relatively low overlap is consistent with the
idea that protein-protein interactions form local connections between members of the same path-
way or protein complex, whereas genetic interactions reflect the consequences of perturbing gene
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function and uncover much broader relationships between diverse functional modules. Although
the relationship between the physical and genetic networks is not yet fully understood, these net-
works appear to be largely orthogonal to one another and contribute complementary information
toward the mapping of gene-gene functional interconnections. As a result, several mathematical
methods have been proposed to integrate physical and genetic networks in order to achieve more
accurate functional predictions for uncharacterized genes (3, 56, 95).

Importantly, large-scale protein-protein interaction networks are being mapped for mam-
malian cells and other metazoan systems (9). Given the relationship between physical structures
and genetic interaction networks in yeast, especially in the context of monochromatic modules,
protein-protein interactions can be used as a skeleton for designing effective experimental strate-
gies for the discovery of genetic interactions in complex systems.

Conservation of Genetic Interaction Networks

Cross-species comparison of genetic interaction networks has recently become possible thanks to
the development of genetic interaction mapping technologies in several eukaryotic and prokaryotic
organisms, including the fission yeast Schizosaccharomyces pombe (27, 38, 78, 79), the gram-negative
bacterium Escherichia coli (16, 94), the nematode worm Caenorhabditis elegans (17, 60), and the fruit
fly Drosophila melanogaster (49). Similarly to the methods used to analyze S. cerevisiae, these tech-
niques emerged from the availability of large-scale collections of strains in which gene activity has
been abolished or significantly reduced, as well as a variety of genetic tools for their manipulation.
Strategies for systematic perturbation of gene function in mammalian cell cultures are also being
developed (58) and have already been successful in mapping cell line–specific essentiality, which
can be used for targeted cancer therapies (19, 65, 67, 84). However, combinatorial analysis of
mammalian gene perturbations is still in its early days and has only recently enabled genome-wide
profiling of pairwise genetic interactions (63).

Analysis of genetic interaction networks in S. pombe showed both differences and similarities
compared with the S. cerevisiae network (27, 78). Despite hundreds of millions of years of evolu-
tionary divergence, S. cerevisiae and S. pombe seem to share ∼30% of their genetic interactions,
with the remaining 70% being species specific (27, 78) (Figure 6a). At least some of the differences
can be explained by unique gene functions, such as the RNA interference (RNAi) machinery, that
are encoded in the S. pombe genome but not in the S. cerevisiae genome (89). In addition, a fraction
of genes conserved in both genomes appear to have undergone functional repurposing, such that
two orthologs, despite maintaining a high degree of sequence similarity, serve different or only
partially overlapping roles in the two organisms (38).

In addition to examining individual gene pairs, comparative studies have assessed the conserva-
tion of broader patterns of genetic interactions, for example, at the level of functional modules and
more general biological processes (79). A recent genome-wide study in S. pombe reported that, al-
though only ∼30% of individual genetic interactions are conserved relative to S. cerevisiae, genetic
interaction crosstalk between functional neighborhoods showed a much higher level of similarity
(79) (Figure 6b). Specifically, this study reported a significant correlation (Spearman rank r =
0.72) in the frequency of S. pombe and S. cerevisiae genetic interactions across pairs of biological
processes, such as chromatin/transcription-related functions and chromosome segregation (79)
(Figure 6b). This level of agreement between the two species suggests that the major topolog-
ical features of genetic interaction networks may be generally conserved and provide important
insights into the functional organization of other organisms.

Similar experimental approaches have taken advantage of a deletion mutant collection in the
bacterium E. coli (2) to uncover genetic interactions in a model prokaryote (16, 94). Despite the
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Figure 6
Conservation of genetic interaction networks. (a) Only 30% of genetic interactions involving orthologous
gene pairs appear to be conserved between Saccharomyces cerevisiae and Schizosaccharomyces pombe. (b) Despite
relatively low conservation at the level of individual gene pairs, interactions between functional modules are
more highly conserved. (c) Genetic interaction hubs in S. cerevisiae and S. pombe, although often involving
nonorthologous genes, tend to have similar physiological and evolutionary properties; knowledge about one
organism can thus be used to predict the degree of genetic interaction in the other.

paucity of available data and the lack of systematic comparisons to the S. cerevisiae network, pre-
liminary results suggest that prokaryotic and eukaryotic genomes, despite their twofold difference
in gene density, might have a similar degree of functional redundancy. For example, systematic
interrogation of 39 nonessential genes in E. coli showed that each gene has ∼20 synthetic lethal
partners on average (16), which is comparable to the estimate of ∼30 synthetic lethal interactions
per nonessential gene in yeast (93). Furthermore, profiles of synthetic lethal interactions in E. coli
are highly informative about a gene’s biological function and, as in S. cerevisiae, enable grouping
of genes into functional modules (16).

Multicellular organisms such as the nematode worm C. elegans (17, 60, 91) and cell lines from
the fruit fly D. melanogaster (49) have also been assessed for genetic interactions on a large scale.
High-throughput genetic analysis in worms and fly cells has been made possible by the availability
of genome-wide RNAi libraries, which can reduce the abundance of specific transcripts (thus mim-
icking loss-of-function mutations) and which are scalable to high-level combinatorial approaches.

C. elegans is particularly suitable for RNAi-mediated genetic interaction studies because a
gene’s expression can be inhibited in the entire organism simply by feeding the worms on a
bacterial lawn expressing the double-stranded RNA of interest. The first systematic study of
genetic interactions in worms screened 37 query genes against ∼1,750 individual RNAi molecules
and identified 350 synthetic lethal interactions, many of which involved human disease orthologs
(60). Although, similarly to S. cerevisiae, genes encoding chromatin regulators acted as network
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hubs in the C. elegans genetic interaction network, the overall degree to which individual genetic
interactions are conserved between these two organisms is still unclear (17, 69, 90, 91).

Even though synthetic lethality was first discovered in Drosophila (14, 28), systematic combi-
natorial inhibition of gene function in the whole fly organism is much more challenging, and thus
large-scale studies of genetic interactions have instead focused on cell cultures. In a recent report,
an RNAi strategy was used to systematically map pairwise genetic interactions among 93 genes
encoding signaling factors (49). Negative and positive genetic interactions were identified using
several phenotypic readouts, including cell number, nuclear area, and fluorescence intensity of
stained nuclei (49). Interestingly, different phenotypes seemed to uncover different functional re-
lationships between genes, as only ∼20% of the identified genetic interactions were common to
all phenotypes under consideration. Consistent with yeast and bacterial studies, similar genetic
interaction profiles were predictive of genes sharing similar biological functions, indicating that,
as in all other organisms tested so far, genetic interactions will be instrumental for annotating un-
characterized D. melanogaster. Indeed, the analysis of genetic interaction profiles identified a novel
activator of RAS-MAPK pathway signaling whose function is conserved from flies to humans (49).

The analysis of genetic interaction networks derived from a variety of organisms suggests that
the general properties of genetic interactions, such as the connectivity of biological processes and
the predictive power of genetic interaction profiles, are consistent across organisms, whereas the
degree to which individual genetic interactions are conserved is much less clear. An important
possibility is that, although individual genetic interactions are subject to evolution, the topological
properties of genetic networks may be used to guide the discovery of genetic interactions in
complex organisms.

The Structure and Topology of Genetic Interaction Networks

Topological analysis of genome-wide genetic interaction networks has shown that most genes
have few genetic interactions, but a few genes are highly connected and act as network hubs (21,
93). This property is common to many biological networks—including, for example, the network
of physical interactions between proteins—and seems to be a common rule of connectivity within
the cell (5).

Interestingly, hubs in the yeast genetic interaction network share several fundamental proper-
ties. For example, there is a significant correlation between a gene’s degrees of physical and genetic
interaction, indicating that the same genes tend to be central in both networks (21). Being at the
core of many physical and genetic connections, these genes are likely to be involved in primary
cellular functions. Indeed, physical and genetic interaction hubs are overrepresented for essen-
tial genes as well as genes with severe fitness defects, and they show a wide range of phenotypes
when mutated (21, 22, 54). Physical and genetic interaction hubs are also associated with many
different functional annotations, indicating their tendency to be involved in a variety of cellular
processes (21, 97). For example, many genetic interaction hubs act in chromatin remodeling and
transcription-related functions, which are important for coordinating many cellular events and
thus are expected to be genetically dependent on many different functions (21). Interestingly,
transcription factors and chromatin regulators also appear to be central to the genetic interaction
network in C. elegans (60) and S. pombe (79), suggesting that genetic interaction hubs may be
generally conserved across organisms.

The clear association of genetic interaction hubs with a defined set of gene properties may be
the key to discovering highly connected genes in other organisms and, consequently, to assess-
ing the degree of conservation of genetic network topology (Figure 6c). Using a combination
of physiological and evolutionary gene properties, Koch et al. (57) built a computational model
that successfully predicted genetic interaction degree for S. cerevisiae genes. Importantly, a model
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trained on S. cerevisiae gene features also accurately predicted genetic interaction degree in S. pombe,
including the degree of genes with no S. cerevisiae orthologs, suggesting that many of the predic-
tive relationships discovered in S. cerevisiae also hold true in an evolutionarily distant yeast (57)
(Figure 6c). Consistent with a previous study (78), this analysis also revealed that, although genetic
network hubs in S. cerevisiae and S. pombe have similar properties, the hub genes themselves are not
always conserved (57) (Figure 6c). This finding supports the hypothesis that a substantial network
rewiring occurred between S. cerevisiae and S. pombe (27, 38, 78, 79). Nonetheless, the ability to
predict network hubs using a defined set of gene attributes supports the idea that network topology
may be maintained across large evolutionary distances and suggests that a large-scale S. cerevisiae
genetic interaction map may provide an orthology-independent reference to guide the study of
similar interactions in more complex species.

GENETIC NETWORKS IN HUMAN HERITABILITY

One of the ultimate goals of studying genetic interaction networks is to shed light on the genetic
basis of human phenotypic variation, identify genetic variants responsible for disease, and develop
successful therapeutic strategies. This task is extremely challenging because, unlike in model or-
ganisms and cultured cell lines, standard genetic methods are not applicable in human populations;
systematic genotype-to-phenotype mapping thus requires more sophisticated approaches.

Uncovering the genetic causes of human phenotypic variation is an extensive epidemiological
and statistical endeavor, involving the design of sampling strategies, collection of health data, and
development of new statistical analysis tools. The field has been dominated by genome-wide asso-
ciation studies (GWAS) in which genetic variants, identified by single-nucleotide polymorphism
mapping and genome-wide sequencing efforts, are tested for statistical association with a particular
phenotype. GWAS experiments have quickly and dramatically increased our knowledge of human
genetics, linking more than 1,200 genetic variants to nearly 170 complex traits (59). However,
only a few of these associations explain a substantial portion of trait heritability. For example,
71 genetic variants have been associated with Crohn’s disease, a chronic inflammatory disorder
of the gastrointestinal tract affecting ∼0.1% of the North American population (104). However,
only ∼22% of Crohn’s disease heritability is explained by the cumulative contribution of these
71 variants, indicating that our understanding of the genetic scaffold of this disorder is far from
complete (104).

Several explanations for this missing heritability have been proposed, including environmental
contributions, the influence of particularly rare and undiscovered genetic variants, and a failure
to detect small genetic effects owing to the limited sample size of a typical GWAS (41). The
penetrance of certain phenotypes may also be affected by stochastic changes in gene expression
whereby the impact of a mutation is masked by a higher abundance of an ancestral duplicate
or a promiscuous buffer gene (15, 18). Such stochastic variations in the abundance or activity
of a cellular component have the potential to alter the phenotypic landscape associated with
a particular genotype and might be comparable to the effect of environmental changes, which
reorganize genetic networks in response to a physical or chemical perturbation (4).

Another potential cause of missing heritability is the presence of genetic interactions among
the genetic variants that, when not accounted for, lead to an underestimate of the portion of
heritability explained by the variants (104). Indeed, a model that incorporates the possibility for
genetic interactions between the 71 genetic variants associated with Crohn’s disease showed that
these variants may explain as much as ∼84% of the disease heritability, compared with ∼22%
when considering only additivity between variants (104). This possibility suggests that we might
have already uncovered most of the variants necessary to explain heritable phenotypic variation,
but more work is required to identify their genetic interactions.
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Evidence for the ubiquitous presence of genetic interactions in natural populations has been
accumulating over the past several years. As mentioned above, in yeast, more than 3% of all gene
pairs tested so far exhibit a detectable positive or negative genetic interaction for fitness (21), and
this rate is substantially higher for more-specific phenotypes. Moreover, a comparative analysis of
two closely related S. cerevisiae strains (S288C and �1278b) showed that conditional essentiality,
in which a gene is essential in one strain’s genetic background but not in the other, is almost always
driven by two or more genetic modifiers (29). Being two variants of the same species, S288C and
�1278b are >99% identical (80), just like two human individuals, suggesting that conditional
essentiality and other strain-specific phenotypes are due to genetic interactions involving their
individual sequence variants (29).

A simple conclusion from these observations is that genetic interactions must be taken into
account when associating genotypes to phenotypes in natural populations. However, it has quickly
become evident that this task presents enormous challenges. For example, analysis of the genetic
architecture of Crohn’s disease showed that as many as 500,000 subjects might be necessary to
achieve sufficient statistical power to confidently detect nonadditive effects of genetic variants
(104). Even if assembling such a large cohort of individuals were possible, it would enable only the
detection of pairwise locus interactions, and traits dependent on three or more genetic variants
would remain unexplained (104). We therefore must devise more elaborate strategies to overcome
these statistical limitations.

An important tool at our disposal is the volume of knowledge accumulated through the
extensive analysis of genetic interactions in yeast and other model organisms. For example, one
of the most evident properties of genetic interactions is that they often connect genes encoding
members of functional modules, such as molecular pathways or protein complexes (Figures 4 and
5). This information can be used to restrict the search space for significant genotype-phenotype
associations and should result in the assignment of higher statistical confidence to the identified
hits. Although the mathematical framework necessary to perform this kind of analysis is still being
refined, preliminary results indicate that it is likely to be successful. In S. cerevisiae, for example,
combinations of genetic markers responsible for specific patterns of gene expression were
identified by clustering individual markers into coherent groups based on their genomic location
and functional annotation of the corresponding loci (44). As a result, ∼4,700 marker pairs,
originally identified as potentially affecting expression traits, were reduced to ∼200 interactions
between protein complexes, which were biologically informative and appeared to regulate the
expression of functionally coherent sets of genes (44). Given the promise of this and similar
approaches to separate the true effectors of a particular phenotype from the rest of the potentially
irrelevant genetic variation, the next important step is to apply similar strategies to human GWAS
analyses.

In conclusion, given the importance of genetic interactions in determining the phenotype of
an individual, understanding their general behavior is a fundamental goal in postgenomic biology.
Although this task faces many experimental and statistical challenges in multicellular organisms,
particularly in humans, it is theoretically and practically feasible in yeast, which will soon be the
first organism with a complete pairwise genetic interaction network in at least one experimental
condition. Taking advantage of the volume of knowledge obtained from decades of yeast genetics
will provide a solid foundation for mapping genetic interaction networks in higher organisms.
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