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Abstract

We present decidability results for the verification of
cryptographic protocols in the presence of equational the-
ories corresponding toxor and Abelian groups. Since the
perfect cryptography assumption is unrealistic for crypto-
graphic primitives with visible algebraic properties suchas
xor, we extend the conventional Dolev-Yao model by per-
mitting the intruder to exploit these properties. We show
that the ground reachability problem in NP for the extended
intruder theories in the cases ofxor and Abelian groups.
This result follows from a normal proof theorem. Then, we
show how to lift this result in thexor case: we consider a
symbolic constraint system expressing the reachability (e.g.,
secrecy) problem for a finite number of sessions. We prove
that such constraint system is decidable, relying in partic-
ular on an extension of combination algorithms for unifi-
cation procedures. As a corollary, this enables automatic
symbolic verification of cryptographic protocols employing
xor for a fixed number of sessions.

1 Introduction

In this paper, we demonstrate that the reachability prob-
lem is decidable for cryptographic protocols that employ
primitives with equational properties corresponding toxor
and arbitrary Abelian groups. While the reachability prob-
lem for cryptographic protocols has received a lot of atten-
tion, in most approaches [2, 16, 4, 13] the underlying cryp-
tographic primitives are modeled, following the so called
“Dolev-Yao” model [7], as abstract data types without any
algebraic properties. This simplification may be realistic
for information-theoretically secure crypto schemes, butit
is not valid for primitives such asxor, products, etc.

Algebraic properties of modular exponentation are ex-
ploited by popular cryptographic protocols such as those

based on group Diffie-Hellman [19, 11]. Vernam cipher
and cipher-block chaining mode for block ciphers rely on
xor [12]. Their properties—associativity, commutativity,
cancellation with inverses—arenot, in general, hidden from
the intruder, and abstracting away the intruder’s ability to
exploit them results in missed attacks. For example, the
original version of Bull’s recursive authentication protocol
was formally proved correct in the Dolev-Yao model, but
the protocol usedxor for encryption and was thus vulner-
able to an attack that exploited the self-cancellation prop-
erty [15, 17]. Automatic verification of such protocolsmust
take into account the fact that the cryptographic primitives
obey certain equational theories. Though some procedures
have been designed for verifying protocols in the presence
of algebraic properties (e.g., [11]), there was no relevant de-
cision result in this case until now. The main contribution
of this paper is to develop decision results for protocol in-
security in the presence of relevant equational theories.

Similar results have been obtained independently in [5]
and are published in these proceedings. In that paper, the
authors show that, for a finite number of sessions, the proto-
col insecurity problem is NP-complete in presence of XOR.
In section 1.3, we compare their results and their techniques
with ours.

1.1 Intruder deduction problem

The first question in automating cryptographic protocol
verification is the followingintruder deduction problem:

Given a finite set of messagesT and (presumably)
secrets, can the intruder deduces from T?

Formally, messages are terms over a finite alphabet,

which includes, for instance, encryption. We writeT ?̀ s
as a shorthand for the intruder deduction problem. This de-
cision problem depends on the deduction capabilities of the
intruder. The most widely used deduction relation in this



context is shown in figure 1 (for the case of a symmetric-key
cipher) and known, following [7], as theDolev-Yao model:
the intruder can form pairs and ciphertexts from known
terms, decompose pairs, and decrypt ciphertexts only when
he knows the decryption key. This assumesperfect cryptog-
raphy: the set of messages is supposed to be a free algebra,
which, of course, is an unrealistic hypothesis as many cryp-
tographic primitives do have some algebraic properties.T ?̀ s can be decided in polynomial time for the Dolev-
Yao intruder (i.e., the deduction rules of figure 1). We ob-
serve that this result can be easily derived from a theorem by
D. McAllester [10]: the intruder theory given by the rules
of figure 1 islocal. This means thatT ` s iff there is a
proof which only involves subterms of terms inT; s. This
is true if we add any set of function symbols with rules al-
lowing the intruder to apply these function symbols to any
term and, for some of them, to decompose the terms. We
may also add other encryption functions, in particular those
modeling a public-key cipher. It is also not hard to show

thatT ?̀ s is complete for PTIME.
In the first part of this paper, we consider the same ques-

tion, relaxing, however, the perfect cryptography assump-
tion. Our main motivation is to develop a decision tech-
nique for protocol security that will not miss attacks such
as the Ryan-Schneider attack on the recursive authentica-
tion protocol [17] in which the attacker exploits algebraic
properties of the encryption scheme (see section 4).

We introduce the� symbol, which is interpreted either
asxor, or as an arbitrary Abelian group operator. We prove
a locality theorem for the new set of deduction rules. How-
ever, due to the associativity and commutativity of�, local-

ity only implies thatT ?̀ s is in NP.

1.2 Protocol verification via constraint solving

Cryptographic protocols can be seen as finite sequences
of rules stating “If a principalA receives a messageu,
then she emits a messagev”. However,A may not have
access to the entire messageu. Assume for instance thatu = [[m℄K1 ℄K2 (a messagem cyphered usingK1 and thenK2) and thatA knows the inverse ofK2, but not the in-
verse ofK1. ThenA cannot distinguish this message from
any[m0℄K2 since[m℄K1 looks like any randomly generated
message. This is modeled using terms with variables:u
is written[x℄K2 , parts which cannot be further decomposed
being abstracted with variables. Now, the protocol rules can
be seen as pairs of terms with variablesu; v, which must be
read: “If A receives a message matchingu, then she emits
the corresponding messagev”. That is where an intruder
can mislead a principal, replacing an instance ofu with an-
other instance that he was able to build.

Then, a sequence of messagesm1; : : : ;mk forms a valid

Pairing (P)
T ` u T ` vT ` hu; vi

Encryption (E)
T ` u T ` vT ` [u℄v

Unpairing (UL,UR)
T ` hu; viT ` u T ` hu; viT ` v

Decryption (D)
T ` [u℄v T ` vT ` u

Axioms (A) T ` u if u 2 T
Figure 1. The Dolev-Yao intruder capabilities

protocol trace if eachmi is an instancev� such that the
intruder can deduceu� for some protocol rule(u; v) (and
the principal emittingmi was in a state expecting a messageu�).

Protocol insecurity problem can thus be stated as finding
a sequence of protocol rules(u1; v1); : : : ; (un; vn) (rules
can be repeated, using distinct variables, for multi-sessions)
and a substitution� such that, for everyi < nT0; v1�; : : : ; vi�1� ` ui� (1)

and T0; v1�; : : : ; vn� ` s (2)

for a givens which was expected to be kept secret. Such a
formalization can be found in, e.g., [2, 9, 4, 13] and can be
extended to trace-based properties other than secrecy.

In general finding such ann and a� is undecidable.
Undecidability results from several factors: the intruder’s
ability to generate fresh random data (nonce generation),
the unboundedness of the number of sessions, the ability to
form pairs, and the unboundedness of term sizes. Only the
unbounded number of sessions is essential for undecidabil-
ity. Removing one of the other three is not sufficient for
decidability [6, 1, 8]. This is why the problem of reacha-
bility with a bounded number of sessionshas drawn some
attention. In this setting,n is bounded, we can guess the
rules which are played at every step and reduce the insecu-
rity problem to finding a substitution� satisfying (1) and
(2).
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Several authors showed that reachability is decidable for
a bounded number of sessions,assuming perfect cryptogra-
phy. This line of research culminates with M. Rusinow-
itch and M. Turuani’s result that this problem is co-NP-
complete [16]. The decision technique used in [16, 13]
consists, roughly, in first guessing an interleaving of the
sessions, thus reducing the question to a single session,
then expressing the problem as a constraint solving prob-

lem: T1 ?̀ u1; :::; Tn ?̀ un where each individual constraintTi ?̀ ui is a lifting of the ground intruder deduction problem
to terms with variables. This constraint solving problem is
proved to be in NP if the intruder’s capabilities are modeled
by the deduction rules of figure 1.

In the second part of this paper, we introduce a new sym-
bolic constraint system in which we can express the con-

straintsTi ?̀ ui and prove that these constraints are decid-
able in the presence ofxor. As a consequence, protocol
insecurity is decidable for a bounded number of sessions.

Constraint solving proceeds in several steps. The first
one requires an extended narrowing procedure: roughly, we
want to anticipate all possible simplifications occurring af-
ter any instantiation or combination of subterms of the orig-
inal constraint. Our algorithm is inspired by combination
techniques for unification algorithms [3, 18] and unification
modulo ACUN [14]. In the future, it should be possible to
extend it to other equational theories, typically the theory
of Abelian groups, for which in this paper we already prove
NP-membership in the ground case.

1.3 Comparison with [5] (these proceedings)

In [5], the authors also consider the intruder deductions
(ground reachability). They show a stronger result for the
xor case: they prove that this problem is in PTIME, whereas
we only prove an NP membership. On the other hand, we
also consider the case of Abelian groups.

Now, for the protocol insecurity, in [5], the authors con-
sider a restricted class of protocol rules: for instance a pro-
tocol containing the two following rules:A! B : NA �N 0AA generates two random numbers (nonces)NA

andN 0A and sends toB their xorNA �N 0AB ! A : NA �NBB generates a nonceNB and replies sendingNA �NB
is dismissed in [5]. Such assumptions look reasonable since
the principalB cannot retrieveNA fromNA �N 0A without
knowingN 0A.

All rules of figure 1 and, in addition:

Xor (X)
T ` u T ` vT ` u� v

Inversion (I)
T ` uT ` I(u)

Equality
T ` t t =E uT ` u

Figure 2. Intruder capabilities with equational
theory

Our result does not assume any such restriction. In this
respect, we prove a more general decidability result. How-
ever, in [5], they get an NP upper bound, which we don’t
have. They also abstract out intruder rules using oracles,
and provide an example of application of such oracles.

In order to prove the NP decision result, [5] shows that,
if there is an attack, then there is a polynomial size attack.
We proceed in a completely different way. The protocol
insecurity problem is expressed as a constraint satisfaction
problem as explained above. We provide constraint solving
rules, yielding a complete set of solved forms. Thenall at-
tacks are solutions of these solved forms and the protocol is
insecure iff there is at least one solved form, which implies
the decidability of protocols insecurity withxor. We hope
that this technique can be generalized to other equational
theories.

2 Intruder deductions in the presence of�
2.1 The setting

We assume that messages are terms built over an al-
phabetF of function symbols containing constants, pair-
ing h ; i, encryption[ ℄ , a unary symbolI( ) and a binary
function symbol� used in infix notation. In this paper
we will only consider symmetric-key encryption, but ev-
erything can be extended to several encryption symbols, in-
cluding public/private-key cryptosystems and to other free
symbols as well, such as one-way functions.

We extend the intruder deduction rules of figure 1 as dis-
played in figure 2.

For =E, we consider the congruence generated by the
equations of figure 3, which we will call AG (forAbelian
groups) or the congruence generated by these equations and

3



(x � y)� z = x� (y � z)x� y = y � x0� x = xx� I(x) = 0I(I(x)) = xI(x� y) = I(y)� I(x)I(0) = 0
Figure 3. � axioms

the equationI(x) = x, which will be called thexor theory.
If we orient from left to right the equations of figure 3

other than associativity and commutativity, adding the ex-
tensiony � x � I(x) ! y, we get a convergent rewrite
system modulo associativity and commutativity of�. This
is also the case if we add the ruleI(x) ! x and simplify
all the rules accordingly. Hence every termt has a unique
normal formt # up to associativity and commutativity.

If T is a finite set of terms, letSt(T ) be the least set of
terms such that:� If t 2 T thent 2 St(T )� If t 2 St(T ) thenI(t) # 2 St(T )� If hu; vi 2 St(T ) thenu; v 2 St(T )� If [u℄v 2 St(T ) thenu; v 2 St(T )� If u1�: : :�un 2 St(T ) andu1; : : : ; un are not headed

with �, thenu1; : : : ; un 2 St(T )
When I(x) = x, St(T ) is exactly the subterms of the

flatten forms of terms inT , i.e., the subterms when� is
viewed as a variadic function symbol. In all cases, the num-
ber of elements inSt(T ) is linear in the size ofT (thesizeof
a set of terms is defined, as usual, as the sum of the number
of nodes in each member ofT ).

Our goal in this section is to show that, ifT ` s, then
there is a normal form proof in which only terms inSt(T [fsg) appear. For example, one way to derivea from fa �b; b; 
g is to constructhb; 
i, thena�b�hb; 
i, thena�hb; 
i,
and finallya. But this proof is not minimal since it uses the
“unnecessary” termhb; 
i. The minimal proof consists in
simply addingI(b) anda� b to obtaina.

Since we will need to gather the� rule applications to-
gether, we replace the former(X) rule with the following
general� rule, whose number of premises is unbounded:

(GX)
T ` u1 : : : T ` unT ` u1 � : : :� un

DefineSS(T ) to be the closure ofSt(T ) under�:

SS(T ) = ft1 � : : :� tn j ft1; : : : ; tng � St(T )g

Assuming thatT; s are in normal form, if there is a proof
of T ` s, we get another proof by normalizing the terms at
each inference step: normalizing cannot prevent A, UL, UR
or D and for the other rules equality steps can be pushed
after their application. Therefore, we can assume that all
terms are kept in normal form, a normalization step taking
place after each inference rule. That is why, from now on,
the equality rule will be implicit:

Definition 1 A proof of T ` u is a tree labeled with se-
quentsT ` v such that the root is labeled withT ` v and
every node labeled withT ` v hasn sonsT ` s1; : : : ; T `sn such that

T ` s1 � � �T ` snT ` w is an instance of one of

the rules UL,UR,A,GX,E,P,D,I andw #= v.

Thesizeof a proof is the number of its nodes. We say that a
proof issimpleif everyT ` v occurs at most once on every
branch. We start with a simple result on simple proofs:

Lemma 1 If there is a simple proofP of one of the follow-
ing forms:

...T ` hu; viT ` u ...T ` hv; uiT ` u ...T ` [u℄v ...T ` vT ` u
Thenhu; vi 2 St(T ) (resp.hv; ui 2 St(T ), resp.[u℄v 2
St(T )).
Proof:(sketch) Assume that the last rule is (UL). The other
cases are similar. We construct inductively a branch of the
proof whose every labelT ` w is such thathu; vi 2 St(w).
Assume that the branch is constructed up toT ` w and
consider the subproof yieldingT ` w. By the minimality
hypothesis, eitherw 6= hu; vi or the last inference rule is
not a pairing. Then, investigating all possible last rules,at
least one of the premisses must containhu; vi as a subterm.2
2.2 Normal proofs

Definition 2 A simple proofP of T ` u is normalif� eitheru 2 St(T ) and every non-leaf node ofP is la-
beledT ` v with v 2 St(T )� or P = C[P1; : : : ;Pn℄ where every proofPi is a nor-
mal proof of someT ` vi with vi 2 St(T ) andC is
built using the inference rules P,E,GX,I only.
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Lemma 2 If there is a proof ofT ` u, then there is a nor-
mal proof ofT ` u.

Proof: Consider first the case whereu 2 St(T ). We prove
the result by induction on the size of the proof ofT ` u. If
the proof consists in an application of (A) only, the result is
straightforward.

Let P be a proof ofT ` u. We may assume w.l.o.g.
that the proof is simple (otherwise simplify it and apply the
induction hypothesis). Then consider all possible cases for
the last inference:

If the last rule is (P) (or (E), which is handled in a sim-
ilar way), thenu = hu1; u2i. Observe thatu1; u2 2
St(u) � St(T ). By induction hypothesis, there is a
normal proof ofT ` u1 that involves only terms in
St(T ), and a normal proof ofT ` u2 that involves
only terms inSt(T ), hence the result.

If the last rule is (I), thenu = I(v) # and there is a proof
of T ` v, which is strictly smaller thanP . Moreover,
St(T ) is closed under inverses, hencev 2 St(T ). It
follows, by induction hypothesis, that there is a normal
proofP1 of T ` v. CompletingP1 by (I) rule, we get
a normal proof ofT ` u.

If the last rule is (UL) (or (UR) or (D), which are handled
in a similar way), assume thatP is minimal (otherwise,
the induction hypothesis applies for the shorter proof
of T ` u). By lemma 1,P = ...T ` hu; viT ` u
and hu; vi 2 St(T ) (resp. hv; ui 2 St(T ), resp.[u℄v 2 St(T )). Now, we apply the induction hypothe-
sis and obtain that there is a proof ofT ` hu; vi (resp.T ` hv; ui, resp.T ` [u℄v) that involves only terms in
St(T ).

If the last rule is (GX) and we assumeu is in nor-
mal form, consider the maximal contextC such thatC[P1; : : : ;Pn℄ = P and every node ofC is obtained
by a (GX) rule or an (I) rule (such a context does ex-
ist since at least the root node is obtained in this way).
We transform the proof, gathering together (GX) infer-
ences and commuting (I) and (GX) in such a way that
(I)’s occur before (GX).

The roots ofP 01; : : : ;P 0n are respectively labeled withT ` u1�v1; : : : ; T ` un�vn andu = u1� : : :�un,(v1 � : : : � vn) #= 0. We only consider here normal

forms (eachui � vi is assumed to be in normal form),
with the exception that some of theui; vi can be0.

For eachui � vi, there are four possible cases:

Case A vi 6= 0 and(ui � vi) # is headed with�
Case B vi = 0 andui is headed with�
Case C vi = 0 andui is not headed with�
Case D ui = 0 andvi is not headed with�
Observe that(ui � vi) #2 St(T ) for all termsui � vi
that fall into cases A,B or C: in case C, this follows
from (ui � vi) #= ui 2 St(u) and, in case A,B,(ui � vi) #2 St(T ). Indeed, by maximality ofC, the
last inference rule ofPi cannot be (GX) or (I). Sinceui � vi is headed with�, it cannot be (P) or (E). If it
is (A), then the result is straightforward. In all other
cases, we can apply lemma 1. Then eitherPi = P 0i
and(ui � vi) #2 St(T ) or elseP 0i is obtained fromPi by applying an (I) rule and(I(ui) � I(vi)) #2
St(T ), which implies, by definition ofSt(T ), thatI((I(ui)� I(vi)) #) #= (ui � vi) #2 St(T ).
By induction hypothesis, this means that there exist
normal proofsP 00i for T ` (ui � vi) # that belong
to cases A, B, and C. (Note that, althoughP 0 may be
larger thanP , eachP 0i is strictly smaller thanP sinceP contains at least one (GX) node in addition).

Now we will argue that a normal proof forT ` u =u1 � � � � � un can be constructed usingonly termsui � vi that fall into cases A, B, or C, and that all sub-
proofs ofT ` vi for vi =2 St(T ) (case D) can be simply
removed from the proof ofT ` u.

Suppose there is a total ofm termsui�vi that fall into
cases A, B, or C (m � n). Rearrange the proofs so thatv1; : : : ; vk 2 St(T ) (case A) andvk+1; : : : ; vm = 0
(case B or C).

For every termv in normal form, we defineatomic(v)
as follows:� If v is not headed with�, thenatomic(v) = fvg� If v = v1 � : : : � vk and v1; : : : ; vk are not

headed with�, then atomic(v) is the multisetfv1; : : : ; vkg.

Consider an indexi > m. Now, sincev1 � : : :� vn =0, there is avj such thatI(vi) 2 atomic(vj). How-
ever,(uj � vj) # cannot be headed with�. For, if it
were headed with�, (uj � vj) #2 St(T ), as seen
above, which impliesvj 2 SS(T ), henceI(vi) 2
St(T ), which contradictsvi =2 St(T ). It follows thatvj = I(vi) anduj = 0. Thus for every termvi such
that i > m, for everyj � m, I(vi) =2 atomic(vj). It
follows thatv1 � : : :� vk = 0.
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P1 Pk Pk+1 PmT ` u1 � v1 � � � T ` uk � vk T ` uk+1 � � � T ` um
(GX) T ` u1 � : : :� um| {z }=u

Figure 4. Rearranging the sums

Therefore, the normal proof foru1 � � � � � uk = u1 �v1�u2�v2�� � ��un�vn can be constructed simply
by addingu1 � v1; : : : ; uk � vk in any order. Sinceu1�v1; : : : ; uk�vk 2 St(T ), andu = u1�� � ��un,
this proof satisfies the definition of the normal proof.

Finally, construct the normal proof foru by adding
normal proofs foruk+1; : : : ; um as shown in figure 4.

Now let us go back to the general case: consider a min-
imal size proofP of T ` u, not assuming thatu 2 St(T ).
The proof can be writtenC[P1; : : : ;Pn℄ whereP1; : : : ;Pn
are maximal subtrees ofP whose roots are labeled withT ` vi respectively andvi 2 St(T ) for everyi.

Let us prove the result by induction on the size ofC:� If C is empty, thenu 2 St(T ).� If the last inference rule ofC is (UL), (UR) or (D),
then, by lemma 1,u 2 St(T ).� In all other cases, we consider the sons ofP and apply
the induction hypothesis. 2

2.3 Ground reachability is in NP

Theorem 3 Given a finite set of (ground) termsT and a
ground termu, the derivability ofT ` u is in NP, both in
thexor case and in the case of Abelian groups.

Proof: (sketch) Defineimmediate derivabilityas follows:T ` u is immediately derivable if9 u1; : : : ; un 2 T such
that T ` u is obtained fromT ` u1; : : : ; T ` un by a
single application of an inference rule from (E,P,I,GX).
To prove membership in NP, we proceed as follows:

1. Guess a subsetS of St(T [ fug) containingu. Guess
an orderings1 > : : : > sn on S \ St(T ) and an or-
deringu1 > : : : > um on the remaining part ofS.
Informally, we guess the order in which the subterms
are derived.

2. For everyi = 1; :::; n, check thatT[fs1; : : : ; si�1g `si is immediately derivable.

3. For everyi = 1; :::;m, check thatT [ fs1; : : : ; sng [fu1; : : : ; ui�1g ` u is immediately derivable using
rules from (E,P,I,GX) only.

This algorithm is in NP since there are at mostO(jSt(T[fug)j) steps (i.e., polynomially many) and each step can be
completed in non-deterministic polynomial time.

It is straightforward to see that if the algorithm succeeds,
then T ` u is derivable. For the converse, we rely on
lemma 2: if T ` u is derivable, then there is a normal
proof of T ` u, from which we can derive an ordering on
St(T; u). 2

Let us point out that, as shown in [5], the applicability of
GX can actually be checked in polynomial time in thexor
case. Then it follows from their result that the derivability
of T ` u is actually in PTIME, at least in thexor case,
using a marking algorithms of terms inSt(T; u).
3 Constraint solving in the presence ofxor

For a fixed number of sessions, the reachability prob-
lem reduces (in NP) to the reachability problem for a single
session by guessing an interleaving of the processes repre-
senting each protocol role and then guessing at which step
of the combined process the property is violated [13]. Then,
as explained in section 1.2, the protocol insecurity problem
reduces to constraint solving.

Our (reachability) constraints are finite conjunctions of
expressionsT 
 t whereT is a finite set of terms (with
variables) andt is a term (with variable) and such that, for
any two atomic constraintsT 
 t; T 0 
 t0 in C, eitherT � T 0 or T 0 � T .

A solutionof a constraintC is a substitution� such that,
for everyT 
i u in C, T�; u� are ground andT� ` u� is
derivable (using the rules of figure 2),i.e., the attacker can
construct termu from the termsT available to it after all
variables have been instantiated as specified by�.

From now on, we only consider thexor theory,i.e., the
equations of figure 3 and the identityI(x) = x. We will
discuss the additional difficulties in the Abelian group case.
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To motivate our constructions, let us show some of the
difficulties on examples.

Example 1
Consider the constraintx 
 a wherex is a variable. Then
the set of solutions containsa; ha; bi; h[a℄b; bi; :::. It is in-
finite and cannot be represented as a set of instances of
finitely many terms.

Example 2fag 
 x � y � a; fa; u(x; y); :::g 
 v. The constraint
can be simplified to the equivalent one:fag 
 x0; fag 
y0; fu(x0� z; y0� z); :::g 
 v, wherex0; y0; z are new vari-
ables. In this example, though all variables initially occur
on both sides, variablez occurs only on the left. This situa-
tion cannot occur in the restricted class of protocols consid-
ered in [5]. It cannot occur either in problems derived from
protocol analysis.

Example 3
Let T = fb2 � b3; a1 � a3; x� a2 � a3g andu = b1 � b3.
A solution ofT 
 u is, for instance,x 7! hb1 � b2; a1 �a3i � a1 � a2.

Our first goal is to get rid of possible instantiations that
collapse some of the subexpressions by application of the
rules of figure 3.

Definition 3 A substitution isnormalized, if, for every vari-
ablex, x� is irreducible by the rules of figure 3.

A normalized solution� ofC is collapse freeif:� For any two distinct termsu; v in St(C), u� #6= v� #� For any distinct termsu1; : : : ; un 2 St(C), (u1�: : :�un)� #= u1� � : : :� un�.

Example 4
Consider the constraintx � a 
 y � b. fx 7! a � b; y 7!b� bg is a non-normalized solution,fx 7! a � b; y 7! 0g,fx 7! 
�b; y 7! a�
g, fx 7! b; y 7! ag are non-collapse-
free solutions. Actually, there is no collapse-free solution to
this constraint sincex must contain ab, which implies that(x� b)� #6= x� � b
3.1 First reduction step

The goal of this section is to transform any termt into
a finite set of termsS(t) such that the set of instances
of t (by a normalized substitution) is the setfu� j u 2S(t); � is a collapse-free substitutiong.

The first idea is to guess all possible equalities between
subterms and solve them relying on unification procedures.
However, this is not sufficient.

Example 5
Consider the termt = f(x� y; x) (and the theory ofxor).
Subterms aret; x � y; x; y. Guessing equalities between
these terms, we get several unsolvable systems; only three
identifications yield solvable equations: the empty iden-
tification, x = y and finally x � y = x, which yieldsy = 0. With such identifications, we get the three termsf(x � y; x); f(0; x); f(x; x). Consider now� = fx 7!a� b y 7! ag. t� contains a redex andt� #= f(b; a� b) is
not an instance of any of the above three terms.

We use a procedure which is similar to the combination
of unification procedures of [18, 3], but we insert step 3:

1. Introduce a new variablext for each non variablet 2 St(C). We record this variable introduction
in a set of equalitiesE containingxf(t1;::: ;tn) =f(xt1 ; : : : ; xtn), where, by convention, whenti is a
variable,xti is the variableti itself.

2. Guess an equivalence relation=S on variablesxt, t 2
St(C) n Var(C). For each equivalence class, letex be
a representative ofx, G0 be the set of representatives
of xt wheret not headed with�, andG� be the set
of representatives forxt wheret is headed with�. By
convention, we letex = x for x 2 Var(C).

3. Guess for each variablex 2 Var(C) a decompositionx = Xy2G0 �x;yy � Xx2S�Var(C) �x;SyS
where �i 2 f0; 1g and yS are new variables. The
equalities are recorded in a substitution�0.

4. Compute, for every variablex 2 f ext; t 2 St(C)g [Var(C), the normal formx defined as follows:� xf(t1;::: ;tn) def= f(fxt1 ; : : : ; fxtn)� xt1�:::�tn def= (fxt1 � : : :� fxtn)�0 #.� x def= x�0 if x 2 Var(C).
And for other variables,xt def= ext

5. Compute the occurrence relation on variables as the
smallest transitive relation s.t.x > y if y occurs inx.

6. Check satisfiability using the rules of figure 5, which
express on one hand the independence of the represen-
tative choice for equivalence classes and, on the other
hand, the absence of cycles.

Example 6
Assume that

St(C) = fz; y; z � y; f(z � y)g:
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x = f(x1; : : : ; xn) 2 E ) x = f(fx1; : : : ;fxn)x = x1 � : : :� xn 2 E ) x = (fx1 � : : :�fxn)�0 #x > x ) ?
Figure 5. Checking the consistency of
guesses

Step 1 introduces two variablesxz�y andxf(z�y) and we
have the equalitiesxz�y = z � y andxf(z�y) = f(xz�y).

At step 2, assume we don’t guess any equality.
At step 3 we guess the decompositions:z = �z;f(z�y)xf(z�y) � �10x10 � �11x11y = �y;f(z�y)xf(z�y) � �01x01 � �11x11:
At step 4, we compute:xz�y = (�z;f(z�y)xf(z�y) � �y;f(z�y)xf(z�y)��10x10 � �01x01) #xf(z�y) = f(xz�y)z = �z;f(z�y)xf(z�y) � �10x10 � �11x11y = �y;f(z�y)xf(z�y) � �01x01 � �11x11:

At step 5, we compute the occurrence relation. For instance,
if we chose�z;f(z�y) = 1 and�y;f(z�y) = 0, then we getxz�y > xf(z�y) > xz�y , which will yield unsatisfiability
at the next step. Similarly, choosing�z;f(z�y) = 0 and�y;f(z�y) = 1 yields unsatisfiability.

Assume now that we chose�z;f(z�y) = 1 and�y;f(z�y) = 1, thenxz�y = �10x10��01x01 and the system
passes the satisfiability test.

For instance, if�11 = 0, �01 = �10 = 1, we getz = xf(y�z) � x10y = xf(y�z) � x01xz�y = x10 � x01xf(z�y) = f(xz�y)
Lemma 4 The set of equalitiesx = t defines a substitution� on variables such thatxt =S xu impliest� #=AC u� #.

It follows that the above procedure can be seen as a non-
deterministic computation of a substitution�.
Lemma 5 If � is a normalised solution ofC, then there is
a substitution�, which is an output of the above procedure,
there is a collapse-free solution�0 ofC� such that, for everyx 2 Var(C), x� = x��0.

This lemma allows us to focus our attention on collapse-
free solutions.

Extending the lemma to the case of Abelian groups is
non-trivial. Nevertheless, we believe that there is a similar
lemma for the Abelian groups, proceeding along the lines
of the above example.

3.2 Second reduction step

Let T1 � : : : � Tn be the left members of sequents inC. Guess for eachi the setSi of terms inSt(Ti) that can
be deduced fromTi. Guess a linear ordering>i onSi. This
guess has to be consistent:Si � Si+1 and>i+1 extends>i. Then replace each occurrence ofTi with Ti [ Si and
add, for everyi and everyu 2 Si the constraintTi [ fv 2Si j v <i ug 
 u.

Then, close every left member by� (if u�v; v�w 2 T ,
thenu � w 2 T ) and remove sequentsT 
 u such thatT ` u is derivable (with the rules of figure 2).

We writeC ;2 C 0 if C 0 can be obtained fromC by the
above-described transformation.

Lemma 6� Every� which is a collapse-free solution ofC, is also a
collapse free solution of someC 0 such thatC ;2 C 0.� for every collapse free solution� of C, there is someC 0 such thatC ;2 C 0 and, for everyT 
 u 2 C 0, for
everyv 2 St(T ) such thatT� ` v� is derivable, then
eitherv 2 T or T ` v is not derivable.� If C ;2 C 0 andT 
 u 2 C 0, thenT is closed by�.� If C ;2 C 0, thenSt(C 0) � St(C) and every solution
ofC 0 is a solution ofC

Example 7
The following example will be reused later on. Assume we
have the following constraint after step 1:x1; x2 � x3 
 b� [x4℄ax1; x2 � x3; x4 
 hx2; bi
and let�0 be the following collapse-free solution of the con-
straint:fx1 7! h
; di;x2 7! 
� b;x3 7! d� [hb; ai℄a;x4 7! hb; aig
after step 2 the second constraint is replaced with (among
others) x1; x2 � x3; x4 
 x2x1; x2 � x3; x4 
 x3x1; x2; x3; x4 
 hx2; bi
whose�0 is a solution.
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(P) T 
 hu; vi ; T 
 u; T 
 v
(E) T 
 [u℄v ; T 
 u; T 
 v
(A) T 
 u ; > If u 2 T
(S) T 
 u� v ; T 
 u; T 
 v
(X) T; v � w 
 u� v ; T; v � w 
 u� w
Figure 6. Constraint transformation rules

3.3 Solved forms and completeness

Definition 4 C is in solved form if there is an ordering�o

 onSt(C) such that:

1. for every sequentT 
 u 2 C, u is either a variable or
a sumu1 � : : :� un and in the latter case:

(a) for everyi = 1; :::n, there is a variablexui 2Var(T ) such thatxui >o

 ui, and

(b) eitherxui 2 T or there is a termxui � vui 2 T
such thatxui >o

 y for y 2 Var(vui)

2. if T 
 x � v 2 C (or T 
 x 2 C) and T; T 0 
u1 � : : :� un 2 C, then for everyi, xui 6= x
3. If x 2 Var(u), thenu �o

 x.

Lemma 7 If � is a collapse free solution ofC (obtained by
the previous transformation steps), then there is aC 0 such
that C ; C 0 by the rules of figure 6 andC 0 is a solved
form.

Example 8
Consider again example 7. The constraint now becomesx1; x2 � x3 
 b� [x4℄ax1; x2 � x3; x4 
 x2x1; x2 � x3; x4 
 x3x1; x2; x3; x4 
 b
which is in solved form, withxb = x2; x[x4℄a = x3 and the
orderingx3 >o

 [x3℄a >o

 x4. It can be easily checked
that�0 is again a solution of the constraint.

For every solved form, it is easy to construct a (non nec-
essarily collapse-free,but it doesn’t matter) solution ofthe
constraint, by induction on the variables ordered by�o

:
Lemma 8 Every solved form has a solution.

3.4 The main result

Theorem 9 The solvability of reachability constraints is
decidable (in the case ofxor).

Proof: We may only consider normalized solutions. Given
a constraintC, perform the first two reduction steps. They
terminate and, according to lemmas 6, 5,C has a solution
only if at least one of the resulting constraintsC 0 has a
collapse-free solution. And if some of the resulting con-
straints has a solution, thenC has a solution.

Now, consider the rules of figure 6. They preserve the set
St(C). Hence only finitely many distinct constraints can be
derived using such rules. If the application of the rules does
not terminate, that can only be due to a loop (withX). We
simply avoid loops, keeping tracks of previous constraints.
Then, by lemma 7, ifC has a solution, then there is a con-
straintC 0 obtained by this (now terminating) set of rules
such thatC 0 is a solved form andC 0 has a solution. And
conversely: the solutions of suchC 0 are also solutions ofC.

Then either allC 0 obtained in this way are not in solved
form, in which caseC has no solution or else there is
a constraintC 0 in solved form, in which caseC has a
solution, thanks to lemma 8. 2
Corollary 10 In the presence ofxor, the failure of secrecy
or authentication is decidable for a fixed number of ses-
sions.

4 Example: Bull’s authentication protocol

We illustrate the constraint solving technique of section 3
by applying it to Bull’s recursive authentication protocol.
The protocol was first proved correct [15], and then shown
to be vulnerable [17] once properties ofxor are taken into
account. We consider the 3-party version of the protocol
(see figure 7). The protocol is designed to enable serverS
to distribute pairwise session keysKab andKb
 to A andB, andB andC, respectively.S starts the protocol by sending the entire list of keys toC, protecting each key by�’ing it with h(Kx; Nx). It is
assumed thatKx is a key known only to partyX andS,
andh is a hash function. Since no other party knowsKx
andh cannot be inverted, onlyX can computeh(Kx; Nx)
and use it to learn the session key sent byS.

When C receives the message fromS, it computesh(K
; N
) and uses it to decrypt the last element of the list
and learnKb
. It then recursively forwards the truncated list
to B. B learnsKb
 andKab from the last two elements of
the received list and recursively forwards the remainder toA, who uses it to learnKab. Note thatKab is supposed to re-
main secret fromC, who cannot compute eitherh(Ka; Na),
or h(Kb; Nb).
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1: A! B : Ma = A;B;Na; h(A;B;Na)2: B ! C : Mb = B;C;Nb;Ma; h(B;C;Nb;Ma)3: C ! S : M
 = C; S;N
;Mb; h(C; S;N
;Mb)4: S ! C : Kab � h(Ka; Na);Kab � h(Kb; Nb);Kb
 � h(Kb; Nb);Kb
 � h(K
; N
)5: C ! B : Kab � h(Ka; Na);Kab � h(Kb; Nb);Kb
 � h(Kb; Nb)6: B ! A : Kab � h(Ka; Na)
Figure 7. Recursive authentication protocol

Secrecy ofKab from C fails if the following constraint
is satisfiable:T = fMb; x; y;Kab � h(Ka; Na);Kab �h(Kb; Nb);Kb
�h(Kb; Nb);Kb
�h(x; y)g 
 Kab, where
variablesx; y represent terms whose value can be chosen byC. We guess thatx; y are not instantiated, and that the sub-
terms are derived in the following order:h(x; y) < Kb
 <Kab. Observe thatT ` h(x; y) in one step by applying
function symbolh to x andy, T [ h(x; y) ` Kb
 by (X),T [ h(x; y) [ Kb
 ` Kab by two applications of(X):((Kab � h(Kb; Nb))� (Kb
 � h(Kb; Nb)))�Kb
 = Kab.
Therefore, after the second reduction step we obtain an
empty constraint, proving that secrecy ofKab is violated.

5 Concluding remarks

We gave the first decision result for cryptographic proto-
cols which does not assume the perfect cryptography. First,
our work is incomplete in two respects:

(i) What is the exact complexity of solving the reacha-
bility constraint in thexor case?

(ii) What about an analog of theorem 9 in the case of
Abelian groups?

It should be possible to answer the second question with
a significant extra effort and time since we believe that there
is an analog of lemma 5 for Abelian groups.
The techniques introduced in section 2 and the work of
McAllester [10] raise a more general question:

For which (relevant) equational theories is the
reachability problem in PTIME ? NP? decidable?

The techniques introduced in section 3.1 also raise a general
question in unification theory:

For which equational theories can we restrict our
attention to collapse-free solutions?

In other words: can we extend lemma 5 to arbitrary theories
for which unification is finitary?
Finally, it would be nice to abstract out the lifting argument
of section 3:

Is there a general relationship between the com-
plexity of reachability in the ground case and the
solvability of reachability constraints?
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