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Abstract based on group Diffie-Hellman [19, 11]. Vernam cipher

and cipher-block chaining mode for block ciphers rely on
We present decidability results for the verification of xor [12]. Their properties—associativity, commutativity,

cryptographic protocols in the presence of equational the- cancellation with inverses—anet, in general, hidden from
ories corresponding taor and Abelian groups. Since the the intruder, and abstracting away the intruder’s ability t
perfect cryptography assumption is unrealistic for crypto exploit them results in missed attacks. For example, the
graphic primitives with visible algebraic properties sua$ original version of Bull's recursive authentication provd
xor , we extend the conventional Dolev-Yao model by per-was formally proved correct in the Dolev-Yao model, but
mitting the intruder to exploit these properties. We show the protocol useaor for encryption and was thus vulner-
that the ground reachability problem in NP for the extended able to an attack that exploited the self-cancellation prop
intruder theories in the cases &br and Abelian groups.  erty [15, 17]. Automatic verification of such protocofgist
This result follows from a normal proof theorem. Then, we take into account the fact that the cryptographic primgive
show how to lift this result in theor case: we considera  obey certain equational theories. Though some procedures
symbolic constraint system expressing the reachabdity, ( have been designed for verifying protocols in the presence
secrecy) problem for a finite number of sessions. We proveof algebraic propertie®(g, [11]), there was no relevant de-
that such constraint system is decidable, relying in partic cision result in this case until now. The main contribution
ular on an extension of combination algorithms for unifi- of this paper is to develop decision results for protocol in-
cation procedures. As a corollary, this enables automatic security in the presence of relevant equational theories.
symbolic verification of cryptographic protocols emplayin Similar results have been obtained independently in [5]
xor for a fixed number of sessions. and are published in these proceedings. In that paper, the
authors show that, for a finite number of sessions, the proto-
col insecurity problem is NP-complete in presence of XOR.
In section 1.3, we compare their results and their techsique

1 Introduction .
with ours.

In this paper, we demonstrate that the reachability prob-1 .1 |ntruder deduction problem
lem is decidable for cryptographic protocols that employ

primitives with equational properties corresponding to The first question in automating cryptographic protocol

and arbitrary Abelian groups. While the reachability prob- yerification is the followingntruder deduction problem
lem for cryptographic protocols has received a lot of atten-

tion, in most approaches [2, 16, 4, 13] the underlying cryp- Given afinite set of messagésand (presumably)
tographic primitives are modeled, following the so called secrets, can the intruder deducefrom 7'?
“Dolev-Yao” model [7], as abstract data types without any
algebraic properties. This simplification may be realistic
for information-theoretically secure crypto schemes,ibut ~ which includes, for instance, encryption. We wrifer- s
is not valid for primitives such asor , products, etc. as a shorthand for the intruder deduction problem. This de-
Algebraic properties of modular exponentation are ex- cision problem depends on the deduction capabilities of the
ploited by popular cryptographic protocols such as thoseintruder. The most widely used deduction relation in this

Formally, messages are terms over a finite alphabet,
?



contextis shown in figure 1 (for the case of a symmetric-key

cipher) and known, following [7], as thBolev-Yao model Thku Tkuw
the intruder can form pairs and ciphertexts from known Pairing (P)
terms, decompose pairs, and decrypt ciphertexts only when T+ (u,v)
he knows the decryption key. This assurpegect cryptog-
raphy. the set of messages is supposed to be a free algebra, TkFu Tkuw
which, of course, is an unrealistic hypothesis as many cryp-  Encryption (E)
tographic primitives do have some algebraic properties. T+ [uly
?

T_I— s can be decided in polynomial time for the Dolev- TF (u, ) TF (u,0)
Yao mtruder_ (e, the deducuon.rules pf figure 1). We ob- Unpairing (UL,UR)
serve that this result can be easily derived from a theorem by T+ u Truw
D. McAllester [10]: the intruder theory given by the rules
of figure _1 isloca!. This means thal’ + s iff there is_ a TFu, Tko
proof WhICh only involves subter_ms of termsm,s. This Decryption (D)
is true if we add any set of function symbols with rules al- TEu

lowing the intruder to apply these function symbols to any

term and, for some of them, to decompose the terms. We

may also add other encryption functions, in particular ghos Axioms (A)

modeling a public-key cipher. It is also not hard to show Tru
?

thatT I s is complete for PTIME.

In the first part of this paper, we consider the same ques-
tion, relaxing, however, the perfect cryptography assump-
tion. Our main motivation is to develop a decision tech-
nique for protocol security that will not miss attacks such protocol trace if eachn; is an instancevs such that the
as the Ryan-Schneider attack on the recursive authenticaintruder can deduceos for some protocol ruléu, v) (and
tion protocol [17] in which the attacker exploits algebraic the principal emittingn; was in a state expecting a message

fueT

Figure 1. The Dolev-Yao intruder capabilities

properties of the encryption scheme (see section 4). uo).

We introduce thep symbol, which is interpreted either Protocol insecurity problem can thus be stated as finding
asxor , or as an arbitrary Abelian group operator. We prove a sequence of protocol rulés,,v1), ... , (u,v,) (rules
a locality theorem for the new set of deduction rules. How- can be repeated, using distinct variables, for multi-ees3i
ever, due to the associativity and commutativitymgflocal- and a substitutionr such that, for every < n

?

ity only implies thatl" - s is in NP. Ty, 010, ... 010 F ujo (1)
1.2 Protocol verification via constraint solving and

) L. To,’l)]o',...,’l)nG"_S (2)
Cryptographic protocols can be seen as finite sequences

of rules stating “If a principalA receives a message for a givens which was expected to be kept secret. Such a
then she emits a messagé However, A may not have  formalization can be found in, e.g., [2, 9, 4, 13] and can be
access to the entire message Assume for instance that extended to trace-based properties other than secrecy.
u = [[m]k, ]k, (& message: cyphered usind<; and then In general finding such an and ao is undecidable.
K,) and thatA knows the inverse of<,, but not the in- Undecidability results from several factors: the intrusler
verse ofK;. ThenA cannot distinguish this message from ability to generate fresh random data (nonce generation),
any[m']k, since[m]g, looks like any randomly generated the unboundedness of the number of sessions, the ability to
message. This is modeled using terms with variables: form pairs, and the unboundedness of term sizes. Only the
is written|[z] k., parts which cannot be further decomposed unbounded number of sessions is essential for undecidabil-
being abstracted with variables. Now, the protocol rules ca ity. Removing one of the other three is not sufficient for
be seen as pairs of terms with variables, which mustbe  decidability [6, 1, 8]. This is why the problem of reacha-
read: “If A receives a message matchimgthen she emits  bility with a bounded number of sessiohas drawn some
the corresponding messagé That is where an intruder  attention. In this settingp is bounded, we can guess the
can mislead a principal, replacing an instance efith an- rules which are played at every step and reduce the insecu-
other instance that he was able to build. rity problem to finding a substitution satisfying (1) and
Then, a sequence of messages . . . , m; formsavalid (2).



Several authors showed that reachability is decidable forAll rules of figure 1 and, in addition:
a bounded number of sessioassuming perfect cryptogra-

phy. This line of research culminates with M. Rusinow- Thru Tru
itch and M. Turuani’s result that this problem is co-NP- Xor (X)
complete [16]. The decision technique used in [16, 13] Trugw
consists, roughly, in first guessing an interleaving of the Teu
sessions, thus reducing the question to a single session, Inversion (1)
then expressing the problem as a constraint solving prob-
? ? T l_ I(U)

lem: Ty + uq, ..., T, - u, where each individual constraint

?
T; - u;isa lifting of the ground intruder deduction problem . Trt t=pu
to terms with variables. This constraint solving problem is Equality Tha

proved to be in NP if the intruder’s capabilities are modeled
by the deduction rules of figure 1.

Figure 2. Intruder capabilities with equational
In the second part of this paper, we introduce a new sym-  theory
bolic constraint system in which we can express the con-
?

straintsT; = u; and prove that these constraints are decid-
able in _the presence ofor . As a consequence, prot_ocol Our result does not assume any such restriction. In this
insecurity is decidable for a bounded number of sessions. respect, we prove a more general decidability result. How-
Constraint solving proceeds in several steps. The firstever, in [5], they get an NP upper bound, which we don’t
one requires an extended narrowing procedure: roughly, wehave. They also abstract out intruder rules using oracles,
want to anticipate all possible simplifications occurriig a  and provide an example of application of such oracles.
ter any instantiation or combination of subterms of the-orig In order to prove the NP decision result, [5] shows that,
inal constraint. Our algorithm is inspired by combination if there is an attack, then there is a polynomial size attack.
techniques for unification algorithms [3, 18] and unificatio \We proceed in a completely different way. The protocol
modulo ACUN [14]. In the future, it should be possible to insecurity problem is expressed as a constraint satisfacti
extend it to other equational theories, typically the tyeor problem as explained above. We provide constraint solving
of Abelian groups, for which in this paper we already prove rules, yielding a complete set of solved forms. Thadirat-

NP-membership in the ground case. tacks are solutions of these solved forms and the protocol is
) ) ) insecure iff there is at least one solved form, which implies
1.3 Comparison with [5] (these proceedings) the decidability of protocols insecurity withor . We hope

) ) ~ that this technique can be generalized to other equational
In [5], the authors also consider the intruder deductions theories.

(ground reachability). They show a stronger result for the
xor case: they prove that this problemis in PTIME, whereas
we only prove an NP membership. On the other hand, we
also consider the case of Abelian groups.
Now, for the protocol insecurity, in [5], the authors con- 2.1 The setting
sider a restricted class of protocol rules: for instanceoa pr
tocol containing the two following rules: We assume that messages are terms built over an al-
ASB: Nie N, phabet?—" of funcFion symbols containing constant_s, pair-
ing (-, -), encryption[_]_, a unary symbol ( ) and a binary
function symbol® used in infix notation. In this paper

2 Intruder deductions in the presence ofp

A generates two random numbers (nonde€s)

andN', and sends t@ their xor N4 & N, we will only consider symmetric-key encryption, but ev-
erything can be extended to several encryption symbols, in-
B—A: Ns&® Np cluding public/private-key cryptosystems and to otheefre
symbols as well, such as one-way functions.
B generates a noncds and replies sending We extend the intruder deduction rules of figure 1 as dis-
Na @ Ns played in figure 2.

is dismissed in [5]. Such assumptions look reasonable since For =g, we consider the congruence generated by the
the principalB cannot retrievéV 4 from N4 & N, without equations of figure 3, which we will call AG (fokbelian
knowing V. groupg or the congruence generated by these equations and
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Figure 3. & axioms

the equatiod (z) = z, which will be called thexor theory.

If we orient from left to right the equations of figure 3
other than associativity and commutativity, adding the ex-
tensiony & = ¢ I(z) — y, we get a convergent rewrite
system modulo associativity and commutativitydef This
is also the case if we add the ruléz) — = and simplify
all the rules accordingly. Hence every tetrhas a unique
normal form¢ | up to associativity and commutativity.

If T is a finite set of terms, [e8t(T") be the least set of
terms such that:

e If t € T thent € St(T))

e If t € St(T) thenI(t) | € St(T)

e If (u,v) € SY(T) thenu,v € SY(T)
e If [u], € St(T) thenu,v € St(T)

e Ifu®...®u, € St(T)anduy, ... ,u, are notheaded
with &, thenuy, ... ,u, € SY(T)

WhenI(z) = z, St(T) is exactly the subterms of the
flattenforms of terms inT', i.e., the subterms whem is

viewed as a variadic function symbol. In all cases, the num-

ber of elements ist(7) is linear in the size df" (thesizeof

Assuming thafl", s are in normal form, if there is a proof

of T'+ s, we get another proof by normalizing the terms at
each inference step: normalizing cannot prevent A, UL, UR
or D and for the other rules equality steps can be pushed
after their application. Therefore, we can assume that all
terms are kept in normal form, a normalization step taking
place after each inference rule. That is why, from now on,
the equality rule will be implicit:

Definition 1 A proofof T' F w« is a tree labeled with se-
qguentsT” v such that the root is labeled with - v and
every node labeled with' - v hasn sonsT' F s1,... ,T F

TkFs---TkFs,
s, such that is an instance of one of
ThFw

the rules UL,UR,A,GX,E,P,D,l and |= v.

Thesizeof a proofis the number of its nodes. We say that a
proof issimpleif every T v occurs at most once on every
branch. We start with a simple result on simple proofs:

Lemma 1 If there is a simple prooP of one of the follow-
ing forms:

T+ {u,v) TF (v,u) Thru, Tkv

TFu TkFu TFu

Then(u,v) € St(T) (resp.(v,u) € St(T), resp.[u], €
St(T)).

Proof:(sketch) Assume that the last rule is (UL). The other
cases are similar. We construct inductively a branch of the

a set of terms is defined, as usual, as the sum of the numbeProof whose every labél - w is such thatu, v) € St(w).

of nodes in each member 7).

Our goal in this section is to show that,#f - s, then
there is a normal form proof in which only terms$(7" U
{s}) appear. For example, one way to deriveom {a &

b, b, c}isto constructb, c), thena®bd (b, c), thenad (b, c),
and finallya. But this proof is not minimal since it uses the
“unnecessary” terngb, ¢). The minimal proof consists in
simply addingl (b) anda ¢ b to obtaina.

Since we will need to gather the rule applications to-
gether, we replace the formék) rule with the following
generaks rule, whose number of premises is unbounded:

TF up . TkFu,

(GX)
T"’U/]EB...EB’LLn

DefineSS(T') to be the closure dbt(7") underd:
SST)={t1®...®t, | {t1,... ., tn} CSLT)}

Assume that the branch is constructed ugl'td- w and
consider the subproof yieldinfj - w. By the minimality
hypothesis, eithew # (u,v) or the last inference rule is
not a pairing. Then, investigating all possible last rubgs,
least one of the premisses must confainv) as a subterm.
O

2.2 Normal proofs

Definition 2 A simple proofP of T'  w is normalif

e eitheru € St(T') and every non-leaf node & is la-
beledT I v withv € St(T")

e or P =C[P1,...,P,] where every prodP; is a nor-
mal proof of somd" F v; with v; € St(T) andC' is
built using the inference rules P,E,GX,1 only.



Lemma 2 If there is a proof ofl" - u, then there is a nor-

mal proof ofT" F w.

Proof: Consider first the case whetiec St(T"). We prove
the result by induction on the size of the proofiot w. If

the proof consists in an application of (A) only, the ressilt i

straightforward.

Let P be a proof ofl" F u. We may assume w.l.o.g.
that the proof is simple (otherwise simplify it and apply the
induction hypothesis). Then consider all possible cases fo

the last inference:

If the last rule is (P) (or (E), which is handled in a sim-

ilar way), thenu = (u1,us). Observe thati;,us €
St(u) C St(T'). By induction hypothesis, there is a
normal proof of7" + w; that involves only terms in
St(T), and a normal proof of" + u, that involves
only terms inSt(7"), hence the result.

If the last rule is (1), then: = I(v) | and there is a proof

of T' - v, which is strictly smaller tha®. Moreover,
St(T") is closed under inverses, heneec St(T). It
follows, by induction hypothesis, that there is a normal
proof P, of T+ v. CompletingP; by (I) rule, we get

a normal proof off" F w.

If the last rule is (UL) (or (UR) or (D), which are handled

in a similar way), assume th&is minimal (otherwise,
the induction hypothesis applies for the shorter proof
of T+ u). By lemma 1,

P= T+ (u,v)
TkFu

and (u,v) € St(T) (resp.(v,u) € St(T), resp.
[u], € St(T")). Now, we apply the induction hypothe-
sis and obtain that there is a proofBf- (u, v) (resp.
T+ (v,u), resp.I + [u],) that involves only terms in
SY(T).

If the last rule is (GX) and we assume is in nor-

mal form, consider the maximal conte&t such that
C[P1,...,P,] = P and every node of' is obtained

by a (GX) rule or an (1) rule (such a context does ex-
ist since at least the root node is obtained in this way).
We transform the proof, gathering together (GX) infer-
ences and commuting (l) and (GX) in such a way that
(I)'s occur before (GX).

The roots ofP;, ... , P, are respectively labeled with
TFu ®vy,..., THu,Gv,andu =u; &... B u,,
(1 & ... B v,) J= 0. We only consider here normal

forms (eachu; & v; is assumed to be in normal form),
with the exception that some of the, v; can beD.

For eachu; @ v;, there are four possible cases:

Case A v; # 0 and(u; € v;) | is headed withp
Case B v; = 0 andu; is headed withp

Case C v; = 0 andu; is not headed withp
Case D u; = 0 andw; is not headed witkp

Observe thatu; @ v;) L€ St(T) for all termsu; @ v;
that fall into cases A,B or C: in case C, this follows
from (u; ® v;) |= w; € St(u) and, in case A,B,
(u; @ v;) Le St(T). Indeed, by maximality o€, the
last inference rule oP; cannot be (GX) or (l). Since
u; @ v; is headed withe, it cannot be (P) or (E). If it
is (A), then the result is straightforward. In all other
cases, we can apply lemma 1. Then eitRer= P
and(u; @ v;) le St(T) or elseP] is obtained from
P; by applying an (1) rule and(u;) & I(v;)) l€
St(T"), which implies, by definition ofSt(T), that
I((I(u;) ® I(vy)) 4) 4= (u; £ v;) L€ SYT).

By induction hypothesis, this means that there exist
normal proofsp}’ for T + (u; © v;) | that belong
to cases A, B, and C. (Note that, althoughmay be
larger tharP, eachP; is strictly smaller tharP since

P contains at least one (GX) node in addition).

Now we will argue that a normal proof faf + u =

uy @ --- @ u, can be constructed usimgnly terms
u; @ v; that fall into cases A, B, or C, and that all sub-
proofs ofT" - v; forv; ¢ St(T') (case D) can be simply
removed from the proof df + w.

Suppose there is a total of termsu; @ v; that fall into
cases A, B, or Cre < n). Rearrange the proofs so that
v1,...,vr € St(T) (case A) andbgy1,... ,0p, =0
(case B or C).

For every termy in normal form, we definatomic(v)
as follows:

e If v is not headed withp, thenatomic(v) = {v}

elf v = vy ®... 80, anduy,... v, are not
headed with®, thenatomic(v) is the multiset

{’U],... ,’l)k}.

Consider an index > m. Now, sincev; ... B v, =

0, there is av; such that/(v;) € atomic(v;). How-

ever,(u; ¢ v;) | cannot be headed witl. For, if it

were headed withp, (u; © v;) le St(T), as seen
above, which implies; € SS(T), hencel(v;) €

St(T"), which contradicts; ¢ St(T"). It follows that
v; = I(v;) andu; = 0. Thus for every term; such
thati > m, for everyj < m, I(v;) ¢ atomic(v;). It

follows thatv; & ... ® v, = 0.



Py Py, Py P,
TFu @& vy Tru,®vg TFugs TFum,
(GX)
THFu @...0un,
————
=u
Figure 4. Rearranging the sums
Therefore, the normal proof far, @ - - - @ up = uy B 3. Foreveryi =1,...,m, checkthafl' U {sy,... ,s,} U
v Bus®va - - - Puy, B, can be constructed simply {uy1,... ,u;i—1} F wu is immediately derivable using

by addingu; @ v1,... ,u; @ v in any order. Since
U Bur,. .., upPug € ST),andu = u1 & - - - P uy,
this proof satisfies the definition of the normal proof.

Finally, construct the normal proof far by adding
normal proofs foku 11, . .. , u,, @s shown in figure 4.

Now let us go back to the general case: consider a min-
imal size proofP of T' - u, not assuming that € St(T").
The proof can be writte@'[P4, ... , P, wherePy,... , P,
are maximal subtrees d? whose roots are labeled wit
T + v; respectively and; € St(T') for everyi.

Let us prove the result by induction on the sizeCbf

h

e If C'is empty, theru € St(T).

e If the last inference rule of is (UL), (UR) or (D),
then, by lemma 1y € St(7).

¢ In all other cases, we consider the son$aind apply
the induction hypothesis. g

2.3 Ground reachability is in NP

Theorem 3 Given a finite set of (ground) terni¥s and a
ground termu, the derivability ofl" + « is in NP, both in
thexor case and in the case of Abelian groups.

Proof: (sketch) Definemmediate derivabilityas follows:
T F u is immediately derivable il uq,... ,u, € T such
thatT + u is obtained froml" + wuy,... ,T F u, by a
single application of an inference rule from (E,P,1,GX).
To prove membership in NP, we proceed as follows:

1. Guess a subsstof St(T" U {u}) containingu. Guess
an orderings; > ... > s, on.S N St(7T") and an or-
deringu; > ... > uy, On the remaining part of.
Informally, we guess the order in which the subterms
are derived.

. Foreveryi =1, ...,n, checkthaf"U{sy, ...
s; iIs immediately derivable.

752'7]} F

rules from (E,P,1,GX) only.

This algorithmis in NP since there are at mo$tSt(T'U
{u})|) steps (.e., polynomially many) and each step can be
completed in non-deterministic polynomial time.

It is straightforward to see that if the algorithm succeeds,
thenT F wu is derivable. For the converse, we rely on
lemma 2: if T + w is derivable, then there is a normal
proof of T' - w, from which we can derive an ordering on
SHT, u). O

Let us point out that, as shown in [5], the applicability of
GX can actually be checked in polynomial time in ther
case. Then it follows from their result that the derivajilit
of T' + w is actually in PTIME, at least in theor case,
using a marking algorithms of terms 8t(7", u).

3 Constraint solving in the presence okor

For a fixed number of sessions, the reachability prob-
lem reduces (in NP) to the reachability problem for a single
session by guessing an interleaving of the processes repre-
senting each protocol role and then guessing at which step
of the combined process the property is violated [13]. Then,
as explained in section 1.2, the protocol insecurity pnoble
reduces to constraint solving.

Our (reachability) constraints are finite conjunctions of
expressiond” I+ ¢t whereT is a finite set of terms (with
variables) and is a term (with variable) and such that, for
any two atomic constraint®' I+ ¢, 7' I+ t' in C, either
TCT orT'CT.

A solutionof a constraint' is a substitutiorr such that,
foreveryT IF; uwin C, To,uo are ground and’'o - uo is
derivable (using the rules of figure 2)e., the attacker can
construct termu from the termsT" available to it after all
variables have been instantiated as specified.by

From now on, we only consider theor theory,i.e., the
equations of figure 3 and the identifyz) = z. We will
discuss the additional difficulties in the Abelian groupecas



To motivate our constructions, let us show some of the Example 5

difficulties on examples.

Example 1
Consider the constraint I a wherez is a variable. Then
the set of solutions contains (a, b), ([a]y,b), .... Itis in-

3

finite and cannot be represented as a set of instances

finitely many terms.

Example 2

{a} F 2z @y @ a,{a,u(x,y),...} |+ v. The constraint
can be simplified to the equivalent ongz} IF 2', {a} IF
Yy {u@ ®z,y @ z),..} kv, wherez',y', z are new vari-
ables. In this example, though all variables initially occu
on both sides, variableoccurs only on the left. This situa-
tion cannot occur in the restricted class of protocols abnsi

ered in [5]. It cannot occur either in problems derived from

protocol analysis.

Example 3

LetT = {bg @E b3, a1 Das,rPas P a3} andu = by & bs.
A solution of T' I+ w is, for instanceg — (b & by, a1 &
(l3> @ ay EB as.

Our first goal is to get rid of possible instantiations that
collapse some of the subexpressions by application of the

rules of figure 3.

Definition 3 A substitution iswormalizedif, for every vari-
ablez, zo is irreducible by the rules of figure 3.
A normalized solution of C is collapse freaf:

e For any two distinct terms, v in St(C), uo |# vo |

e Foranydistinctterms,... ,u, € St(C), (w1 6. ..®
Up)o = u10 B ... B uyo.

Example 4

Consider the constraint® a Ik y & b. {z — a® by —

b @ b} is a non-normalized solutiodz — a & b;y — 0},
{z = c®by = a®c}, {x — by — a} are non-collapse-
free solutions. Actually, there is no collapse-free soluto
this constraint since must contain &, which implies that
(z®bol#zo Db

3.1 First reduction step

The goal of this section is to transform any tetrimto

a finite set of termsS(¢) such that the set of instances

of ¢t (by a normalized substitution) is the sgif | u €
S(t), 8 is a collapse-free substitutidn

Consider the term = f(z &y, z) (and the theory okor ).
Subterms are,z ¢ y,x,y. Guessing equalities between
these terms, we get several unsolvable systems; only three
identifications yield solvable equations: the empty iden-
OEjfication, x y and finallyz & y = =z, which yields

y = 0. With such identifications, we get the three terms
flz @ y,x), f(0,x), f(x,z). Consider nowr {z —

a® by a}.to contains aredex ang = f(b,a® b) is

not an instance of any of the above three terms.

We use a procedure which is similar to the combination
of unification procedures of [18, 3], but we insert step 3:

1. Introduce a new variable; for each non variable
t € St(C). We record this variable introduction
in a set of equalities containingzy,...+,) =
flx,, ...,z ), where, by convention, wheh is a
variable,z;, is the variable; itself.

2. Guess an equivalence relatiey on variablese;, t €
St(C) \ Var(C). For each equivalence class, #ebe
a representative of, Gy be the set of representatives
of 2; wheret not headed withp, andGg be the set
of representatives far; wheret is headed withp. By
convention, we lek = z for z € Var(C).

3. Guess for each variahtee Var(C) a decomposition

Tr = Z €x,yY D Z

yeGo zeSC Var(C)

€x,5YS

wheree; € {0,1} andys are new variables. The
equalities are recorded in a substitutign

4. Compute, for every variable € {z;,t € St(C)} U
Var(C), the normal forn defined as follows:

def —

L wf(tl,...,tn) = f(wt17"' 71‘77,)

__ de —
* Tio ot = (T, B... BT, )00 |

7z dZEfa:oo if z € Var(C).
And for other variabless; &' Z;

5. Compute the occurrence relation on variables as the
smallest transitive relation si.> y if y occurs inz.

6. Check satisfiability using the rules of figure 5, which
express on one hand the independence of the represen-
tative choice for equivalence classes and, on the other
hand, the absence of cycles.

Example 6

The first idea is to guess all possible equalities betweenagsyme that
subterms and solve them relying on unification procedures.

However, this is not sufficient.

SH(C) ={zy,z2y,f(zy)}.



x=f(x1,...,2p) €EE = T=f(z1,...,T,)
T=21@..0x, €E = T=(@1D...8T,)00
r>r = 1

Figure 5. Checking the consistency of

guesses

Step 1 introduces two variablesg, andzy.q,), and we
have the equalities.q, = z © y andzs.q,) = f(T.ay)-
At step 2, assume we don’t guess any equality.
At step 3 we guess the decompositions:

z
Y

(z@y)Tf(zmy) D €10T10 D €11711
(z@y)Tf(zmy) D €01To1 D €11T11.

[,

"2,

€
€

[,

z

3

At step 4, we compute:

Toay = (€ 1GoyTicoy @ €y tonTtey)
BeroT10 B €01201) 4
Tf(2py) f(720y)
Z = € fzay)T(zay) D €10T10 D €121
Y = €y fonTf(zay) © 01701 © 11711

At step 5, we compute the occurrence relation. For instance
if we chosee; t(.q,) = 1 ande, ;.q,) = 0, then we get
Togy > Tr(gy) > T2ay, Which will yield unsatisfiability

at the next step. Similarly, choosinrg f(.s,) = 0 and

€y, f(zay) = 1 Yields unsatisfiability.

Assume now that we chose. y(.q,) 1 and
€y.fzmy) = 1, thenT g, = e10710 D €101 and the system
passes the satisfiability test.

For instance, it;; = 0, €91 = €19 = 1, we get

Z = Tiye:) DTio
Y = Ziye: PTo
Trpy = T10 DT
Tr(zy) = f(@20y)

Lemma 4 The set of equalities = ¢ defines a substitution
# on variables such that, =g =, impliestf |=¢ uf |.

It follows that the above procedure can be seen as a non
deterministic computation of a substitutin

Lemma 5 If o is a normalised solution af’, then there is

a substitutiord, which is an output of the above procedure,
there is a collapse-free solutiart of C8 such that, for every

z € Var(C), zo = zbo’.

This lemma allows us to focus our attention on collapse-
free solutions.

Extending the lemma to the case of Abelian groups is
non-trivial. Nevertheless, we believe that there is a simil
lemma for the Abelian groups, proceeding along the lines
of the above example.

3.2 Second reduction step

LetT) C ... C T, be the left members of sequents in
C. Guess for eachthe setS; of terms inSt(7;) that can
be deduced frort;. Guess a linear ordering; on S;. This
guess has to be consisterst; C S;.; and >;,; extends
>;. Then replace each occurrencelfwith 7; U S; and
add, for everyi and everyu € S; the constrainfl; U {v €
Si|v<iu}lFu.

Then, close every left member by(if u v, vew € T,
thenu & w € T') and remove sequents I « such that
T F u is derivable (with the rules of figure 2).

We write C' ~5 C" if C' can be obtained fror@' by the
above-described transformation.

Lemma 6

e Everyo which is a collapse-free solution 6f, is also a
collapse free solution of sont¢ such thatC' ~, C’.

e for every collapse free solution of C, there is some
C' such thatC' ~» C' and, for everyl" I u € C', for
everyv € St(T') such thatl's I vo is derivable, then
eitherv € T or T' F v is not derivable.

e IfC~»s C'andT Ik u € C', thenT is closed bys.

e If C ~y C', thenSt(C') C St(C) and every solution
of C' is a solution ofC

Example 7
The following example will be reused later on. Assume we
have the following constraint after step 1:

b b 4]
b (z2,b)

and leto be the following collapse-free solution of the con-
straint:

T1,T2 © T3
T1,T2 D T3,T4

{z1 — (e,d);z0 = cH byzs = d P [(b,a)]a; x4 — (b,a)}

after step 2 the second constraint is replaced with (among

others)

T, Pr3,xqe b 29
71, T2 B w3, w4 b w3
L1,X2,L3, T4 I+ <:I:27b>

whoseoy is a solution.



P) TIF(u,v) ~ TIku,TIlFv
(E) TIF[uly ~ TIlkuTlFov
(A) Thru ~ T lfueT
(S) ThFudv ~ TlkuTlFo

X) T,2wowlFudv TovdwlFudw

Figure 6. Constraint transformation rules

3.3 Solved forms and completeness

Definition 4 C is in solved formif there is an ordering
> e ONSt(C) such that:

1. for every sequertt I u € C, u is either a variable or

asumu; @ ... P u, and in the latter case:

(a) for everyi = 1,...n, there is a variabler,,, €
Var(T) such thatz,,, >,.. u;, and

(b) eitherx,, € T orthereisaterme,, v, € T
such thatz,,, >,.. y fory € Var(v,,)

T Fzgve CorT IFaxe C)andT, T I+
u B ... 0u, € C,thenforevery, z,, # x

3. Ifz € Var(u), thenu >,.. x.

Lemma 7 If o is a collapse free solution @ (obtained by
the previous transformation steps), then there 8'asuch
that C ~ C' by the rules of figure 6 and’ is a solved
form.

Example 8
Consider again example 7. The constraint now becomes

X1, @9 P Ik DD [24]a
T1,To Pr3,xge b xo
T1,To Pr3,xg b x3

L1,T2,T3,T4 I+ b

which is in solved form, withe, = 3, z[,,), = =3 and the
orderingzs >occ [T3]a >oce 4. It can be easily checked
thato is again a solution of the constraint.

For every solved form, it is easy to construct a (non nec-
essarily collapse-free,but it doesn’t matter) solutiortraf
constraint, by induction on the variables orderedy..:

Lemma 8 Every solved form has a solution.

3.4 The main result

Theorem 9 The solvability of reachability constraints is
decidable (in the case afor ).

Proof: We may only consider normalized solutions. Given
a constraintC, perform the first two reduction steps. They
terminate and, according to lemmas 6(5has a solution
only if at least one of the resulting constrair@$ has a
collapse-free solution. And if some of the resulting con-
straints has a solution, thénhas a solution.

Now, consider the rules of figure 6. They preserve the set
St(C). Hence only finitely many distinct constraints can be
derived using such rules. If the application of the rulessdoe
not terminate, that can only be due to a loop (With We
simply avoid loops, keeping tracks of previous constraints
Then, by lemma 7, it has a solution, then there is a con-
straint C' obtained by this (now terminating) set of rules
such thatC’ is a solved form and’’ has a solution. And
conversely: the solutions of su€H are also solutions af'.

Then either al”’ obtained in this way are not in solved
form, in which caseC' has no solution or else there is
a constraintC’ in solved form, in which cas€' has a
solution, thanks to lemma 8. |

Corollary 10 Inthe presence ofor , the failure of secrecy
or authentication is decidable for a fixed number of ses-
sions.

4 Example: Bull's authentication protocol

We illustrate the constraint solving technique of section 3
by applying it to Bull's recursive authentication protocol
The protocol was first proved correct [15], and then shown
to be vulnerable [17] once propertiesxafr are taken into
account. We consider the 3-party version of the protocol
(see figure 7). The protocol is designed to enable sefver
to distribute pairwise session keys,, and K. to A and
B, andB andC, respectively.

S starts the protocol by sending the entire list of keys to
C, protecting each key by'ing it with hA(K,, N;). Itis
assumed thak, is a key known only to partyX and .S,
andh is a hash function. Since no other party knoiis
andh cannot be inverted, onlX can computé (K, N,.)
and use it to learn the session key sentShy

When C receives the message frol, it computes
h(K., N.) and uses it to decrypt the last element of the list
and learnK,.. It then recursively forwards the truncated list
to B. B learnsK;. and K, from the last two elements of
the received list and recursively forwards the remainder to
A, who usesitto leari ;. Note thati,; is supposed to re-
main secret fron®’, who cannot compute eithe( K ,, N, ),
or h(Ky, Ny).



A= B: M, = A,B,Na, h(A,B,N,)

B—C:M,=B,C,Ny, My, (B, C, Ny, M,)

C—-S:M.=C,S, NC,Mb,h(C, S, NC,M(,)

S—>C:Ku® h(Ka,Na),Kab S¥] h(K(,,N(,),

Ky ® h(Ky, Ny), Kpe ® h(K., N,.)

5. C = B: Kuy @ h(Ka, N, Ky & h(Kp, Ny)
Ky & h(Kp, Np)

6. B A:Ku ® h(Ka,N,)

-

Figure 7. Recursive authentication protocol

Secrecy ofK,;, from C fails if the following constraint

is satisfiable:T" = {My,z,y, Ko ® h(Ka, No), Kop @
h(Ky, Ny), Kpe ©h(Kp, Np), Kpe Sh(z,y)} IF Kqp, where

variablest, y represent terms whose value can be chosen by
C. We guess that, y are not instantiated, and that the sub-

terms are derived in the following ordéli(z, y) < K. <

K,,. Observe thafl’ - h(z,y) in one step by applying

function symbolh to = andy, T'U h(z,y) F K. by (X),
T U h(x,y) U Ky - K, by two applications of X):
((Kap @ h(Kp, Np)) & (Kpe @ h(Ky, Np))) D Kpe = Kap.

Therefore, after the second reduction step we obtain an

empty constraint, proving that secrecyiof is violated.

5 Concluding remarks

We gave the first decision result for cryptographic proto-
cols which does not assume the perfect cryptography. First,

our work is incomplete in two respects:

(i) What is the exact complexity of solving the reacha-

bility constraint in thexor case?

(i) What about an analog of theorem 9 in the case of

Abelian groups?

It should be possible to answer the second question with
a significant extra effort and time since we believe thateher

is an analog of lemma 5 for Abelian groups.

The techniques introduced in section 2 and the work of

McAllester [10] raise a more general question:

For which (relevant) equational theories is the
reachability problem in PTIME ? NP? decidable?

The techniques introduced in section 3.1 also raise a genera

guestion in unification theory:

For which equational theories can we restrict our
attention to collapse-free solutions?

In other words: can we extend lemma 5 to arbitrary theories

for which unification is finitary?

Finally, it would be nice to abstract out the lifting argurhen

of section 3:

Is there a general relationship between the com-
plexity of reachability in the ground case and the
solvability of reachability constraints?
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