Multi-species mechanistic model of functional response provides new insights into predator-mediated interactions in a vertebrate community [article]

Andréanne Beardsell, Dominique Gravel, Jeanne Clermont, Dominique Berteaux, Gilles Gauthier, Joël Bêty
2021 bioRxiv   pre-print
Prey handling processes are considered a key driver of short-term positive indirect effects between prey sharing the same predator. However, a growing body of research indicates that predators are rarely limited by such processes in the wild. Density-dependent changes in predator foraging behavior can also generate positive indirect effects but they are rarely included as explicit functions of prey densities in functional response models. With the aim of untangling proximate drivers of species
more » ... nteractions in natural communities and improve our ability to quantify interaction strength, we extended the Holling multi-species model by including density-dependent changes in predator foraging behavior. Our model, based on species traits and behavior, was inspired by the vertebrate community of the arctic tundra, where the main predator (the arctic fox) is an active forager feeding primarily on cyclic small rodent (lemming) populations and eggs of various tundra-nesting bird species. Short-term positive indirect effects of lemmings on birds have been documented over the circumpolar Arctic but the underlying proximate mechanisms remain poorly known. We used a unique data set, containing high-frequency GPS tracking, accelerometer, behavioral, and experimental data to parameterize the multi-species model, and a 15-year time series of prey densities and bird nesting success to evaluate interaction strength between species. Our results showed that: (i) prey handling processes play a minor role in our system and (ii) density-dependent changes in predator foraging behavior can be the proximate drivers of a predominant predator-mediated interaction observed in the arctic tundra. Mechanisms outlined in our study have been little studied and may play a significant role in natural systems. We hope that our study will provide a useful starting point to build mechanistic models of predation, and we think that our approach could conceivably be applied to a broad range of food webs.
doi:10.1101/2021.10.22.464289 fatcat:ejxcu255nzblfngvpgjurfpcqy