A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Topic time series analysis of microblogs
2016
IMA Journal of Applied Mathematics
Social media data tend to cluster around events and themes. Local newsworthy events, sports team victories or defeats, abnormal weather patterns and globally trending topics all influence the content of online discussion. The automated discovery of these underlying themes from corpora of text is of interest to numerous academic fields as well as to law enforcement organizations and commercial users. One useful class of tools to deal with such problems are topic models, which attempt to recover
doi:10.1093/imamat/hxw025
fatcat:osxuxlbfcrgipgnkskoiccgg6e