Sensitivity analysis of an ocean carbon cycle model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

V. Scott, H. Kettle, C. J. Merchant
2011 Ocean Science (OS)  
The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO 2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at
more » ... three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60 • N 40 • W), the Porcupine Abyssal Plain (49 • N 16 • W) and the European Station for Time series in the Ocean Canary Islands (29 • N 15 • W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO 2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO 2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
doi:10.5194/os-7-405-2011 fatcat:lvgc6ikh55astjtocznfqwihnq