A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Predicting high-cost patients by Machine Learning: A case study in an Australian private hospital group
unpublished
Healthcare is considered a data-intensive industry, offering large data volumes that can, for example, be used as the basis for data-driven decisions in hospital resource planning. A significant aspect in that context is the prediction of cost-intensive patients. The presented paper introduces prediction models to identify patients at risk of causing extensive costs to the hospital. Based on a data set from a private Australian hospital group, four logistic regression models designed and
doi:10.29007/jw6h
fatcat:e2ze526rknh53par2pmegarozu