A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Graph Factorization Machines for Cross-Domain Recommendation
[article]
2020
arXiv
pre-print
Recently, graph neural networks (GNNs) have been successfully applied to recommender systems. In recommender systems, the user's feedback behavior on an item is usually the result of multiple factors acting at the same time. However, a long-standing challenge is how to effectively aggregate multi-order interactions in GNN. In this paper, we propose a Graph Factorization Machine (GFM) which utilizes the popular Factorization Machine to aggregate multi-order interactions from neighborhood for
arXiv:2007.05911v1
fatcat:f6xugvw5ifglzeprw542gad72u