Bcl2 Impedes DNA Mismatch Repair by Directly Regulating the hMSH2-hMSH6 Heterodimeric Complex

Yongzhong Hou, Fengqin Gao, Qinhong Wang, Jinfeng Zhao, Tammy Flagg, Yangde Zhang, Xingming Deng
2007 Journal of Biological Chemistry  
Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutS␣ is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutS␣ activity and increased mutagenesis. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone results in
more » ... tanone results in accumulation of Bcl2 in the nucleus, which interacts with hMSH6 but not hMSH2 via its BH4 domain. Deletion of the BH4 domain from Bcl2 abrogates the ability of Bcl2 to interact with hMSH6 and is associated with enhanced MMR efficiency and decreased mutation frequency. Overexpression of Bcl2 reduces formation of the hMSH2-hMSH6 complex in cells, and purified Bcl2 protein directly disrupts the hMSH2-hMSH6 complex and suppresses MMR in vitro. Importantly, depletion of endogenous Bcl2 by RNA interference enhances formation of the hMSH2-hMSH6 complex in association with increased MMR and decreased mutagenesis. Thus, Bcl2 suppression of MMR may occur in a novel mechanism by directly regulating the heterodimeric hMSH2-hMSH6 complex, which potentially contributes to genetic instability and carcinogenesis.
doi:10.1074/jbc.m608523200 pmid:17259174 fatcat:5t64tamtvbgm5bjhraul5la3mm