Generative Adversarial Network Technologies and Applications in Computer Vision

Lianchao Jin, Fuxiao Tan, Shengming Jiang
<span title="2020-08-01">2020</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3wwzxqpotbc73bzpemzybzg7ee" style="color: black;">Computational Intelligence and Neuroscience</a> </i> &nbsp;
Computer vision is one of the hottest research fields in deep learning. The emergence of generative adversarial networks (GANs) provides a new method and model for computer vision. The idea of GANs using the game training method is superior to traditional machine learning algorithms in terms of feature learning and image generation. GANs are widely used not only in image generation and style transfer but also in the text, voice, video processing, and other fields. However, there are still some
more &raquo; ... roblems with GANs, such as model collapse and uncontrollable training. This paper deeply reviews the theoretical basis of GANs and surveys some recently developed GAN models, in comparison with traditional GAN models. The applications of GANs in computer vision include data enhancement, domain transfer, high-quality sample generation, and image restoration. The latest research progress of GANs in artificial intelligence (AI) based security attack and defense is introduced. The future development of GANs in computer vision is also discussed at the end of the paper with possible applications of AI in computer vision.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2020/1459107">doi:10.1155/2020/1459107</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/32802024">pmid:32802024</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC7416236/">pmcid:PMC7416236</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bwqbonr34nfb7mw5omomzmamna">fatcat:bwqbonr34nfb7mw5omomzmamna</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201103231855/http://downloads.hindawi.com/journals/cin/2020/1459107.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e1/dc/e1dcb7cdfeb4444d7c6c88a0f5d688fabe673b6d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2020/1459107"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416236" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>