A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
A Prototype-Based Modified DBSCAN for Gene Clustering
2012
Procedia Technology - Elsevier
In this paper, we propose, a novel DBSCAN method to cluster the gene expression data. The main problem of DBSCAN is its quadratic computational complexity. We resolve this drawback by using the prototypes produced from a squared error clustering method such as K-means. Then, the DBSCAN technique is applied efficiently using these prototypes. In our algorithm, during the iterations of DBSCAN, if a point from an uncovered prototype is assigned to a cluster, then all the other points of such
doi:10.1016/j.protcy.2012.10.058
fatcat:bktj2box7zabdgsjhnj7fvmeuu