Large-Eddy Simulation of Flow Past a Circular Cylinder Using OpenFOAM and Nektar++

Hongyi Jiang, Xiaoying Ju, Yucen Lu
2021 Volume 8: CFD and FSI   unpublished
Steady incoming flow past a circular cylinder has been a classical problem in fluid mechanics owing to its extensive practical applications in e.g. offshore engineering. In this study, large-eddy simulations are performed for flow past a circular cylinder at the Reynolds number (Re) of 3900. Particular focuses are on the comparisons of different numerical methods and computational domain patterns. The case Re = 3900 is computed with both OpenFOAM and Nektar++, which are based on the
more » ... finite volume method and the highorder spectral/hp element method, respectively. It is found that the computational cost for the Nektar++ model is only less than 10% of that for the OpenFOAM model. In addition, both circular and C-shaped domains are tested for the OpenFOAM and Nektar++ models. It is found that a circular domain is required for the OpenFOAM model to minimise the footprint of mesh non-orthogonality on the simulated flow, while the Nektar++ model does not have strict requirements for the orthogonality of the mesh. The present findings regarding the computational cost and the domain/mesh patterns are expected to be applicable to the numerical modelling of bluff-body flows in general. Based on Nektar++ and the circular domain, additional simulations are performed at Re = 1000 and 7000. For the three Re values investigated, the Strouhal number, hydrodynamic forces and the streamwise and spanwise vorticity fields are examined and compared.
doi:10.1115/omae2021-61392 fatcat:femrznpkhvcklosr5k5tdx4arq