Near Real-Time Comprehension Classification with Artificial Neural Networks: Decoding e-Learner Non-Verbal Behavior

Mike Holmes, Annabel Latham, Keeley Crockett, James D. OShea
2018 IEEE Transactions on Learning Technologies  
2017)Near real-time comprehension classification with artificial neural networks: decoding e-Learner non-verbal behaviour. Abstract-Comprehension is an important cognitive state for learning. Human tutors recognise comprehension and non-comprehension states by interpreting learner non-verbal behaviour (NVB). Experienced tutors adapt pedagogy, materials and instruction to provide additional learning scaffold in the context of perceived learner comprehension. Near real-time assessment for
more » ... r comprehension of on-screen information could provide a powerful tool for both adaptation within intelligent e-learning platforms and appraisal of tutorial content for learning analytics. However, literature suggests that no existing method for automatic classification of learner comprehension by analysis of NVB can provide a practical solution in an e-learning, on-screen, context. This paper presents design, development and evaluation of COMPASS, a novel near real-time comprehension classification system for use in detecting learner comprehension of on-screen information during e-learning activities. COMPASS uses a novel descriptive analysis of learner behaviour, image processing techniques and artificial neural networks to model and classify authentic comprehension indicative non-verbal behaviour. This paper presents a study in which 44 undergraduate students answered on-screen multiple choice questions relating to computer programming. Using a front-facing USB web camera the behaviour of the learner is recorded during reading and appraisal of on-screen information. The resultant dataset of non-verbal behaviour and question-answer scores has been used to train artificial neural network (ANN) to classify comprehension and non-comprehension states in near real-time. The trained comprehension classifier achieved normalised classification accuracy of 75.8%.
doi:10.1109/tlt.2017.2754497 fatcat:4htwmwczhnhobadnjbnd76lbr4