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Statement of translational relevance 
The tumor suppressor p53 is one of the most highly studied in the field of cancer 
research due to its functions on tumor cell survival and apoptosis. However, tumor 
metabolic reprogramming fuels cancer cell malignant growth and proliferation. In this 
review, we systematically document the mechanisms of p53 in tumor metabolism 
regulation. On this basis, we analyzed the therapeutic strategy whereby p53 helps to 
prevent tumor malignant metabolic phenotype, bioenergetic, and biosynthetic 
processes, and blocking the reprogramming of tumor metabolism will provide new 
strategies for tumor therapy. 
 
Abstract 
It is well established that the altered metabolism exhibited by cancer cell, including 
high rates of glycolysis, lactate production, and biosynthesis of lipids, nucleotides, 
and other macromolecules, which may occur either as a consequence or as a cause of 
tumorigenesis, plays an essential role in cancer progression. Recently, the tumor 
suppressor p53 was found to play a central role in this process. Here, we review the 
role of p53 in modulating tumor metabolism. Specifically, we focus on the functions 
of p53 in regulating of aerobic glycolysis, oxidative phosphorylation, the pentose 
phosphate pathway, fatty acid synthesis and oxidation, glutamine metabolism, and 
discuss the therapeutic strategy whereby p53 helps to prevent malignant progression.   
 

Introduction 

The rapid proliferation of tumors consumes large quantities of bioenergy and 
biomaterials, which drive metabolic reprogramming to maintain tumor malignant 
behavior. The first alteration in tumor metabolism was discovered by the Nobel Prize 
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winner Otto Warburg in the 1920s. He found that, cancer cells prefer to metabolize 
glucose by glycolysis, even in the presence of ample oxygen. Compared with 
mitochondrial respiration, glycolysis is a less efficient pathway for producing ATP (1). 
In addition to aerobic glycolysis, another major pathway of glucose metabolism, the 
pentose phosphate pathway (PPP), is also enhanced in tumor cells (2). Furthermore, 
both fatty acid metabolism and glutamine metabolism are also altered during tumor 
development (3,4). During the course of tumor metabolic reprogramming, oncogene 
activation and tumor suppressor gene inactivation cause alterations to multiple 
intracellular signaling pathways that affect tumor cell metabolism (5,6).  

  p53 is one of the most highly studied tumor suppressor genes in the field of cancer 
research (7). The tumor suppressive function of p53 is mainly attributed to dual 
mechanisms: p53 can either promote the repair and survival of damage cells, or 
promote the permanent removal of irreparable damage cells through apoptosis or 
autophagy (8-10). These cellular processes regulated by p53 are ascribed to that p53 is 
a nuclear transcription factor to regulate the transcription of numerous target genes. 
Activation of p53 at the early stage of cellular stresses, such as DNA damage, can 
promote G1 phase cell cycle arrest and DNA repair through transactivation of 
p21WAF1, p53R2, and GADD45 (11). After the repair of DNA lesions, cells can then 
re-enter into the normal cell cycle. In this way, p53 is able to maintain the genomic 
integrity to prevent tumor occurrence and development. Alternatively, p53 may exert 
its proapoptotic function leading to the removal of cells with extensive and irreparable 
DNA damage. For this, p53 can activate the transcription of various proapoptotic 
genes, including those genes encoding the BH-3 only proteins Bax, Noxa, and Puma 
(12-14), which promote apoptosis. Furthermore, p53 can also trigger apoptosis by the 
transcriptional repression of the anti-apoptotic gene survivin (15). Thus, complex 
regulation by p53 can prevent tumor initiation and progression.  

Recent observations demonstrate that many tumor suppressor genes play important 
roles in metabolic regulation in addition to their established roles in cell survival and 
apoptosis. As p53 is the most frequently mutated tumor suppressor gene in human 
cancers, its function is relatively well-characterized, it was thus the first tumor 
suppressor recognized to regulate tumor metabolism. In this review, we focus on the 
metabolic functions of the p53 tumor suppressor gene and on p53-related therapeutic 
strategies. We discuss how the p53 tumor suppressor influences the tumor metabolic 
phenotype, bioenergetic, and biosynthetic processes to repress tumor growth and 
proliferation, and also discuss potential metabolic targets for tumor treatment. 

p53 and tumor glucose catabolism: the glycolysis pathway 

Cancer cells are characterized by aerobic glycolysis with the utilization of glucose and 
production of lactate. Several biological functions of p53 dampen the glycolysis 
pathway in cells. In the third step in glycolysis, 6-phosphofructo-1-kinase (PFK-1), 
which acts as a key rate-limiting enzyme, converts fructose-6-phosphate to 
fructose-1,6-bisphosphate. p53 induces TIGAR (TP53-induced  glycolysis and 
apoptosis regulator) expression via transcriptional activation. The TIGAR protein has 
sequence similarity with the bisphosphatase domain of the bifunctional enzyme 
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6-phosphofructo-2- kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), and can 
dephosphorylate fructose-2,6-bisphosphate (Fru-2,6-P2), thereby lowering 
intracellular level of this metabolite. As Fru-2,6-P2 is the most potent activator of 
PFK-1, a p53-dependent reduction in Fru-2,6-P2 levels mediated by TIGAR results in 
the inhibition of glycolysis (5,16). A second p53 metabolic effector is 
phosphoglycerate mutase (PGM), which converts 3-phosphoglycerate to 
2-phosphoglycerate at a later step in glycolysis. Wild-type p53 down-regulates PGM, 
mutation of p53 can enhance PGM activity and glycolytic flux. Thus, p53-dependent 
down-regulation of PGM expression and activity can inhibit the glycolysis pathway 
(17,18). However, p53 is also a transcriptional activator of the muscle-specific PGM 
gene and involved in myocyte differentiation (19). It seems likely that the pathways 
which regulate the enzymes involved in glycolysis are different in species and tissues. 

Besides inhibition of glycolytic enzyme reactions via TIGAR and PGM, p53 can 
also reduce intracellular glucose levels by inhibiting the expression of glucose 
transporters. For example, p53 directly represses the transcriptional activity of the 
GLUT1 and GLUT4 gene promoters (20). In addition, p53 also represses GLUT3 
gene expression indirectly by preventing activation of the IKK–NF-κB pathway (21, 
22). Therefore, p53 recovery and activation in tumor cells can attenuate aerobic 
glycolysis by reducing glucose uptake through the glucose transporters.  
  However, this inhibitory function of p53 in tumor glycolysis is contradicted by 
other studies that show an opposing activity. It was reported that, at least under some 
circumstances, p53 can significantly activate the type II hexokinase promoter leading 
to increased expression of type II hexokinase, which facilitates a high rate of 
glycolysis (23). Although this p53 activity may increase the survival of tumor cells 
under this circumstance (6), the complex p53-dependent mechanisms that regulate 
glycolysis need further investigation (Fig. 1). 

p53 and tumor glucose catabolism: mitochondrial respiration  

It is described by Otto Warburg that cancer cells preferentially utilize glycolytic 
pathways for energy generation while downregulating mitochondrial respiration, and 
one reason he proposed is that cancer cells have irreversible damages to mitochondrial 
oxidative phosphorylation. Interestingly, the key component involved in oxidative 
phosphorylation is the synthesis of cytochrome c oxidase 2 (SCO2), which can be 
directly transactivated by p53. SCO2 is required for the assembly of mitochondrial 
DNA-encoded cytochrome c oxidase (COX) II subunit into the COX complex of the 
mitochondrial electron transport chain, where is the site of mitochondrial oxidative 
phosphorylation in mammalian cells. Therefore, disruption of SCO2 with p53 in 
human cancer cells aggravated the metabolic switch to glycolysis, and activation of 
p53 could increase SCO2 expression and thereby stimulate mitochondrial respiration 
and ATP production (24,25). In addition to participating in the assembly of COX II 
subunit via SCO2, p53 is also involved in the posttranscriptional regulation of the 
COX II subunit, and therefore contributes to the stability of COX II protein and the 
structural integrity of mitochondria (26). Furthermore, p53 can directly upregulate the 
gene encoding the COX I subunit of the COX complex in colon cancer cells (27), 

Research. 
on April 13, 2017. © 2012 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 3, 2012; DOI: 10.1158/1078-0432.CCR-11-3040 

http://clincancerres.aacrjournals.org/


4 
 

which may contribute to the maintenance of mitochondrial cytochrome c oxidase, the 
complex IV in the electron transport chain. Finally, p53 can transcriptionally activate 
the apoptosis-inducing factor (AIF) to maintain the integrity of complex I in the 
mitochondrial electron transport chain (28-30). Thus, through maintaining 
mitochondrial respiratory chain, p53 plays an important role in enhancing 
mitochondrial oxidative phosphorylation in cancer cells.  
  In addition, activation of p53 can also enhance the mitochondrial tricarboxylic acid 
(TCA) cycle rate. Glutaminase 2 (GLS2) can be directly transactivated by p53 and 
can therefore mediate p53-dependent regulation of cellular energy metabolism. GLS2 
encodes a mitochondrial glutaminase that catalyzes the hydrolysis of glutamine to 
glutamate, and deamination of glutamate generates α-ketoglutarate, which is a key 
intermediate in the TCA cycle. Thus, GLS2 mediates the role of p53 in regulating the 
mitochondrial tricarboxylic acid cycle, and thus in regulating mitochondrial 
respiration (4,31). Another potentially significant role is that p53 physically interacts 
with mitochondrial transcription factor A to maintain mitochondrial DNA and regulate 
apoptosis, whether this interaction has an impact on mitochondrial respiration need to 
be further investigated (32). Interestingly, failure of DNA repair in the ATM+/- mice 
impairs p53 activity and results in mitochondrial dysfunction, p53-/- mice also display 
impaired mitochondrial biogenesis and respiration in mixed muscle (33,34). Therefore, 
p53 may have several intricate roles to promote mitochondrial respiration (Fig. 1). 

p53 and tumor glucose catabolism: the pentose phosphate pathway 

The pentose phosphate pathway (PPP) is important for both glucose catabolism and 
biosynthesis, PPP can generate NADPH (nicotinamide adenine dinucleotide 
phosphate, reduced) and ribose 5-phosphate, the essential precursors of nucleotides. 
The p53 tumor suppressor inhibits the pentose phosphate pathway, thereby 
suppressing glucose consumption, and the production of NADPH and ribose 
5-phosphate. The tumor suppressor p53 binds to glucose-6-phosphate dehydrogenase 
(G6PD), the unique and rate-limiting enzyme of the PPP, and inhibits the activity of 
G6PD. Therefore, the enhanced PPP glucose flux may direct glucose towards ribose 
5-phosphate and NADPH biosynthesis when p53 mutates in many human tumor cells 
(2,35) (Fig. 1).  

p53 and tumor fatty acid metabolism 

Besides aerobic glycolysis, increasing de novo synthesis of fatty acids is another 
characteristic of tumor metabolism, which is essential for liquid synthesis and protein 
modification (36-38). Acetyl-CoA carboxylase (ACC), the key rate-limiting enzyme 
catalyzing de novo fatty acid synthesis from acetyl-CoA, is phosphorylated and 
inactivated by AMP-activated protein kinase (AMPK) (39). AMPK is a heterotrimeric 
enzyme complex consisting of a catalytic subunit (α) and two regulatory subunits (β 
and γ) that maintains cellular energy homeostasis. AMPK β subunit is 
transcriptionally induced by p53, leading to increased AMPK β expression (40). 
Therefore, p53 upregulates AMPK expression to inactivate ACC, and thereby inhibits 
de novo fatty acids synthesis.  
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  The tumor microenvironment is characterized by chronic hypoxia as well as 
deprivation of nutrients, such as glucose (41). When glucose is unavailable, fatty acid 
oxidation is the preferred alternative pathway used to generate energy (42). The 
increased fatty acid oxidation in response to glucose deprivation requires p53 and its 
transcriptional target gene guanidinoacetate methyltransferase (GAMT), which 
encodes an essential enzyme involved in creatine synthesis. The GAMT metabolite 
creatine could increase fatty acid oxidation by AMPK phosphorylation and activation, 
associated with ACC inactivation and decreased de novo fatty acids synthesis (43). In 
addition, fatty acid oxidation is connected to TCA cycle by converting acyl-CoA to 
acetyl-CoA, contributing to the maintenance of oxidative phosphorylation. Further, 
increased fatty acid oxidation can also inhibit glycolysis (44,45). Thus, it might be 
that p53 modulates both fatty acid anabolism and catabolism to maintain cellular 
energy levels (Fig. 2).  

 

Current strategies to target the p53 pathway in tumor metabolism 

In tumor cells, the p53 pathway is often disrupted. Therefore, recovering the function 
of wild-type p53 and its targets in tumor cells is a key therapeutic objective. In head 
and neck cancer, p53 mutations are frequent, and the incidence of p53 mutations 
increases with progression of head and neck cancer (46,47). Therefore, a recombinant 
human adenovirus that expresses functional wild-type p53 has been approved by the 
Chinese government for the treatment of head and neck carcinoma (48-50). 
Treatments showed that antitumor efficacy was associated with the expression and 
activity of functional p53, and adverse effects were also significant (51-54). Recently, 
pharmacologically activated wild-type p53 by small molecule compound RITA is 
reported to inhibit glycolytic enzymes, and therefore induce robust apoptosis in cancer 
cells (55). In addition, enhancement of p53 protein stability is also a target in restoring 
wild-type p53 activity in cancer cells. The protein level of wt p53 protein level is 
regulated by HDM2 ubiquitin ligase, which targets p53 for degradation via 
ubiquitylation (56,57). Therefore, HDM2 inhibitors HLI98 can stabilize p53 and and 
Nutlin 3A rescue tumor suppression function in cancer cells (58,59). Unfortunately, 
this approach has the risk to enhance the pro-survival adaptation functions of p53 in 
some tumors (60,61), and clarify the mechanism by which p53 coordinates adaptation 
could discover new therapeutic targets in cancer expressing wild-type p53.  
  Tumor metabolic alterations meet the bioenergetic and biosynthetic demands of 
increased cell proliferation, and targeting of tumor metabolism may appear on the 
stage of tumor therapy. Thus, drugs that mimic the metabolic effect of p53 are able to 
perturb cancer cell metabolism and inhibit cancer cell proliferation. Since tumor cells 
rely on glycolysis for ATP production for their survival, the molecular targets of p53 
in the glycolytic pathway might be the potential therapeutic targets in cancer. Indeed, 
the non-metabolizable glucose analogs, 2-deoxyglucose or 3-bromopyruvate, can 
inhibit glycolysis and ATP production (62,63). Moreover, the glucose transporter 
inhibitor phloretin inhibits glucose uptake and sensitizes tumor cells to 
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chemotherapeutic drug daunorubicin (64). As p53 repression of GLUT3 expression is 
mediated by IKK–NF-κB pathway, thereby inhibition of the activation of IKK–NF-κB 
pathway can be another target for cancer treatment. It has been demonstrated 
R-roscovitine can inhibit the function of IKK and downregulate NF-κB activation. In 
addition to NF-κB pathway, the cyclin-dependent kinase inhibitor roscovitine can also 
dramatically enhance the expression of p53 and block the degradation of p53 
mediated by MDM2, thereby activating the p53 pathway and inhibiting glycolysis in 
tumor (65-67).  
  Silencing of mitochondria is another characteristic feature of tumor cells. Hence, 
mimic the metabolic effect of p53 to maintain mitochondrial respiration chain and 
shift energy production from glycolysis to mitochondrial respiration might be a 
therapeutic strategy for cancer. Overexpression of the Friedreich ataxia-associated 
protein, frataxin, promotes mitochondrial oxidative metabolism in colon cancer cells, 
via stimulation of the synthesis of the Fe-S clusters that maintain the integrity of 
complexes in the mitochondrial electron transport chain. Through stimulation of 
mitochondrial activity, frataxin inhibited colony formation and suppressed tumor 
formation in nude mice (68,69). Thus, the induction of mitochondrial energy 
conversion is a potential therapeutic approach in cancer. In addition, mitochondrial 
uncoupling contributes to the dysfunction of wild-type p53 and metabolic 
reprogramming of cancer cells. Therefore, inhibition of mitochondrial uncoupling by 
selective inhibitors or some other ways may help restore the functions of p53 to 
inhibit aerobic glycolysis, and provide novel targets for anti-cancer therapy (70,71). 
  In the course of fatty acid metabolism regulated by p53, AMPK is a key factor 
linking fatty acid synthesis and oxidation. The activation of AMPK induces fatty acid 
oxidation and mitochondrial respiration, and represses fatty acid synthesis and 
glycolysis. Thus, AMPK may be a beneficial target for cancer treatment. Recent 
studies support this, showing that pharmacological AMPK activators, such as 
metformin, phenformin, and AICAR attenuate cancer cell growth and inhibit 
tumorigenesis in animal models (72,73). Therefore, recover the activity or mimic the 
metabolic effect of p53 is the potential strategy in cancer therapy.  

Concluding remarks 

The proliferation of malignant cancer cells needs nutrients, energy, and biosynthetic 
activity. Therefore, metabolic reprogramming fuels cancer cell malignant growth and 
proliferation. Mutation and inactivation of tumor suppressor genes contributes not 
only to cancer initiation, proliferation, and progression, but also to metabolic 
reprogramming in cancer cells. This review attempts to summarize the current state of 
tumor suppressor gene p53 in tumor metabolism, especially its role in tumor glucose 
catabolism and fatty acid metabolism, and highlights therapeutic strategies targeting 
the p53 pathway in tumor metabolism. In general, p53 suppresses aerobic glycolysis, 
while enhancing mitochondrial respiration. In addition, p53 also suppresses the 
biosynthetic pentose phosphate pathway, thereby inhibiting the synthesis of 
nucleotides and lipids in tumor cells. Moreover, p53 promotes fatty acid oxidation and 
inhibits the synthesis of fatty acids, and the metabolic products of fatty acid oxidation 
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can enhance mitochondrial oxidative phosphorylation in cancer cells. 
  It is always believed that the cancer cell genotype is a manifestation of six essential 
alterations: self-sufficiency in growth signals, insensitivity to growth-inhibitory 
signals, evasion of programmed cell death, limitless replicative potential, sustained 
angiogenesis, and tissue invasion and metastasis (74). Tumor metabolic 
reprogramming, which fuels tumor limitless replication and growth, might be added 
to this list (75). The p53 plays an important inhibitory role in this metabolic 
reprogramming, and p53 pathway components involved in this aspect of p53 function 
should therefore be considered as novel targets for tumor therapy.  
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Figure Legends 

Fig. 1 p53 regulates glucose catabolism in cancer cells. Several metabolic effectors of 
p53 are involved in the glucose metabolic processes, such as TIGAR, PGM, 
GLUT1/4, IKK, Hexokinase, SCO2, AIF, GLS2, and G6PD, which finally inhibit the 
glycolytic pathway and the pentose phosphate pathway while enhancing 
mitochondrial respiration. Please see text for details.  
  
Fig. 2 p53 regulates fatty acid metabolism in cancer cells. The regulation of p53 in 
fatty acid anabolism and catabolism is partially mediated by the activation of AMPK. 
p53 upregulates AMPK expression to inactivation ACC, and thereby inhibits de novo 
fatty acids synthesis. In addition, p53 also increases fatty acid oxidation by promoting 
AMPK expression and activation.  
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