Map LineUps: Effects of spatial structure on graphical inference

Roger Beecham, Jason Dykes, Wouter Meulemans, Aidan Slingsby, Cagatay Turkay, Jo Wood
2017 IEEE Transactions on Visualization and Computer Graphics  
This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: http://openaccess.city.ac.uk/15119/ Link to published version: http://dx.Fig. 1: Two map line-up tests. Left: constructed under an unrealistic null of Complete Spatial Randomness. Right: constructed under a null in which spatial autocorrelation occurs. Abstract-Fundamental to the effective use of visualization as an analytic and descriptive tool is
more » ... e assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n = 361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011 ), Harrison et al. (2014 and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.
doi:10.1109/tvcg.2016.2598862 pmid:27875155 fatcat:5nkv27jw3zh5bpxsrs7aweouoe