Attention-based Temporal Weighted Convolutional Neural Network for Action Recognition [article]

Jinliang Zang, Le Wang, Ziyi Liu, Qilin Zhang, Zhenxing Niu, Gang Hua, Nanning Zheng
2018 arXiv   pre-print
Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area of natural language processing, we propose the Attention-based Temporal Weighted CNN (ATW), which
more » ... s a visual attention model into a temporal weighted multi-stream CNN. This attention model is simply implemented as temporal weighting yet it effectively boosts the recognition performance of video representations. Besides, each stream in the proposed ATW framework is capable of end-to-end training, with both network parameters and temporal weights optimized by stochastic gradient descent (SGD) with backpropagation. Our experiments show that the proposed attention mechanism contributes substantially to the performance gains with the more discriminative snippets by focusing on more relevant video segments.
arXiv:1803.07179v1 fatcat:bpiocesvb5bsvfqwkanqolr2ry