Quantum One-Time Memories from Stateless Hardware [article]

Anne Broadbent, Sevag Gharibian, Hong-Sheng Zhou
2018 arXiv   pre-print
A central tenet of theoretical cryptography is the study of the minimal assumptions required to implement a given cryptographic primitive. One such primitive is the one-time memory (OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time classical and quantum programs. It is known that secure OTMs do not exist in the standard model in both the classical
more » ... and quantum settings. Here, we show how to use quantum information, together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically secure OTMs. This is in sharp contrast with the classical case, where stateless hardware tokens alone cannot yield OTMs. In addition, our scheme is technologically simple. We prove security in the quantum universal composability framework, employing semi-definite programming results of Molina, Vidick and Watrous [TQC 2013] and combinatorial techniques of Pastawski et al. [Proc. Natl. Acad. Sci. 2012].
arXiv:1511.01363v2 fatcat:3zxvjdrjzredpl7x37uehahbde