Cyclic AMP decreases the phosphorylation state of myelin basic proteins in rat brain cell cultures

J B Ulmer, A M Edwards, F A McMorris, P E Braun
1987 Journal of Biological Chemistry  
Previous work has suggested that myelin basic proteins are phosphorylated prior to their appearance in the myelin sheath (Ulmer, J. B. and Braun, P. E. (1984) Dev. Neurosci. 6, 345-355). In order to corroborate this finding we have examined the phosphorylation of myelin basic proteins in rat brain cell cultures containing 14-17% oligodendrocytes. Incorporation of 32P into the 14-, 17-, 18.5-, and 21.5-kDa myelin basic proteins was observed in cells incubated with 32P at 7, 14, and 21 days in
more » ... ture. Myelin basic proteins in 14-day cells incorporated 32P linearly until at least 120 min after the addition of isotope. The apparent half-life of myelin basic protein phosphate groups was determined to be approximately 80 min in pulse-chase experiments. However, this value may be an overestimation due to the presence of significant levels of acid-soluble radioactivity in the cells throughout the chase period. The presence of dibutyryl cAMP or 8-bromo-cAMP in the incubation medium substantially inhibited the incorporation of 32P into the myelin basic proteins at all time points studied. The presence of dibutyryl cAMP in the chase medium in pulse-chase experiments resulted in an increase in the turnover rate of [32P] phosphate in the myelin basic proteins. These results indicate that cAMP decreases the phosphorylation state of myelin basic proteins in oligodendrocytes by inhibiting the phosphorylation and/or stimulating the dephosphorylation of myelin basic proteins.
pmid:2433287 fatcat:pgarw2ykcredldblvjoc7rwmlu