A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Kernelization for Treewidth-2 Vertex Deletion
[article]

2022
*
arXiv
*
pre-print

The Treewidth-2 Vertex Deletion problem asks whether a set of at most t vertices can be removed from a graph, such that the resulting graph has treewidth at most two. A graph has treewidth at most two if and only if it does not contain a K_4 minor. Hence, this problem corresponds to the NP-hard ℱ-Minor Cover problem with ℱ = {K_4}. For any variant of the ℱ-Minor Cover problem where ℱ contains a planar graph, it is known that a polynomial kernel exists. I.e., a preprocessing routine that in

arXiv:2203.10070v1
fatcat:wwgdzrskpzfypaijleupjv7eo4