Effects of Temperature, pH, and Iron/Clay and Liquid/Clay Ratios on Experimental Conversion of Dioctahedral Smectite to Berthierine, Chlorite, Vermiculite, or Saponite

Regine Mosser-Ruck, Michel Cathelineau, Damien Guillaume, Delphine Charpentier, Davy Rousset, Odile Barres, Nicolas Michau
2010 Clays and clay minerals  
In deep geological repositories for high-level nuclear wastes, interactions between steel canisters and clay-rich materials may lead to mineralogical transformations with a loss of the confining properties of the clays. Experiments simulating the conversion of smectite to Fe-rich clay phases in contact with Fe metal have been carried out to evaluate such a possibility by taking into account the effects of a series of critical parameters, including temperature, pH, and Fe/clay (Fe/C) and
more » ... (Fe/C) and liquid/clay (L/C) ratios. The mineralogical and chemical transformations observed in these experiments have been compared with data from the literature, and subsequently used to propose a conceptual model for the main mineralogical transformations which can be expected in clay formations surrounding high-level nuclear waste repositories. In the presence of Fe metal and under low oxygen fugacity (<10 À40 ) the main mineralogical sequences are as follows: (1) up to 150ºC, under neutral pH, and L/C > 5: dioctahedral smectite (di-sm) ? 7 Å Fe-rich phase (berthierine, odiniteÀcronstedtite) for large Fe/C ratios (>0.5), or di-sm ? Fe-rich di-sm + Fe-rich trioctahedral smectite (tri-sm) for small Fe/C ratios (0.1); (2) up to 150ºC, under alkaline pH (10À12), and L/C > 5: di-sm ? Fe di-sm (Ôpalygorskite) for a small Fe/C ratio (0.1); (3) at 300ºC, Fe/C = 0.1, and L/C > 5: di-sm ? Fe-rich saponite ? trioctahedral chlorite + feldspar + zeolite (near-neutral pH); di-sm ? Fe-rich vermiculite + mordenite (pH 10À12). Low temperatures (<150ºC) and large L/C and Fe/C ratios seem to favor the crystallization of the serpentine group minerals instead of Fe-rich trioctahedral smectites or chlorites, the latter being favored by higher temperatures. The role of L/C and Fe/C ratios and the competition between them at different temperatures is a crucial point in understanding the transformation of smectite in contact with Fe metal.
doi:10.1346/ccmn.2010.0580212 fatcat:2efctqq3uzbv7gprh565gwexeu