Bayesian learning theory applied to human cognition

Robert A. Jacobs, John K. Kruschke
2010 Wiley Interdisciplinary Reviews: Cognitive Science  
Probabilistic models based on Bayes' rule are an increasingly popular approach to understanding human cognition. Bayesian models allow immense representational latitude and complexity. Because they use normative Bayesian mathematics to process those representations, they define optimal performance on a given task. This article focuses on key mechanisms of Bayesian information processing, and provides numerous examples illustrating Bayesian approaches to the study of human cognition. We start by
more » ... providing an overview of Bayesian modeling and Bayesian networks. We then describe three types of information processing operations-inference, parameter learning, and structure learning-in both Bayesian networks and human cognition. This is followed by a discussion of the important roles of prior knowledge and of active learning. We conclude by outlining some challenges for Bayesian models of human cognition that will need to be addressed by future research. 
doi:10.1002/wcs.80 pmid:26301909 fatcat:hzpseinb55fz5edlwoco2sn3bu