Study of the Direct CO2 Carboxylation Reaction on Supported Metal Nanoparticles

Fabien Drault, Youssef Snoussi, Joëlle Thuriot-Roukos, Ivaldo Itabaiana, Sébastien Paul, Robert Wojcieszak
2021 Catalysts  
2,5-furandicarboxylic acid (2,5-FDCA) is a biomass derivate of high importance that is used as a building block in the synthesis of green polymers such as poly(ethylene furandicarboxylate) (PEF). PEF is presumed to be an ideal substitute for the predominant polymer in industry, the poly(ethylene terephthalate) (PET). Current routes for 2,5-FDCA synthesis require 5-hydroxymethylfurfural (HMF) as a reactant, which generates undesirable co-products due to the complicated oxidation step. Therefore,
more » ... direct CO2 carboxylation of furoic acid salts (FA, produced from furfural, derivate of inedible lignocellulosic biomass) to 2,5-FDCA is potentially a good alternative. Herein, we present the primary results obtained on the carboxylation reaction of potassium 2-furoate (K2F) to synthesize 2,5-FDCA, using heterogeneous catalysts. An experimental setup was firstly validated, and then several operation conditions were optimized, using heterogeneous catalysts instead of the semi-heterogeneous counterparts (molten salts). Ag/SiO2 catalyst showed interesting results regarding the K2F conversion and space–time yield of 2,5-FDCA.
doi:10.3390/catal11030326 fatcat:4rkny6f3vjhizaef6wotavqmnm