Improving the COCOMO model using a neuro-fuzzy approach

Xishi Huang, Danny Ho, Jing Ren, Luiz F. Capretz
2007 Applied Soft Computing  
Accurate software development cost estimation is important for effective project management such as budgeting, project planning and control. So far, no model has proved to be successful at effectively and consistently predicting software development cost. A novel neuro-fuzzy Constructive Cost Model (COCOMO) is proposed for software cost estimation. This model carries some of the desirable features of a neuro-fuzzy approach, such as learning ability and good interpretability, while maintaining
more » ... e merits of the COCOMO model. Unlike the standard neural network approach, the proposed model can be interpreted and validated by experts, and has good generalization capability. The model deals effectively with imprecise and uncertain input and enhances the reliability of software cost estimates. In addition, it allows input to have continuous rating values and linguistic values, thus avoiding the problem of similar projects having large different estimated costs. A detailed learning algorithm is also presented in this work. The validation using industry project data shows that the model greatly improves estimation accuracy in comparison with the well-known COCOMO model. #
doi:10.1016/j.asoc.2005.06.007 fatcat:clgst4dj55egfdj4f5lol36jfi