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ABSTRACT

In this thesis, we explore the polarization dependent properties of the
tilted fibre Bragg gratings for the in situ characterization of single-
wall carbon nanotubes deposited on the cladding of a fibre using a
layer-by-layer deposition technique.

First, we describe an exact analytical and fully-vectorial solution
of the cladding modes of a standard telecom fibre. The cladding of
an optical fibre is a multimode wave guide and can support many
thousands of modes. We present an algorithm to efficiently solve the
complex propagation constants of the cladding modes. Our analysis
shows that based on the polarization properties, the cladding modes
can be classified into two categories: dominant radial and dominant
azimuthal. The formalism is then extended to an arbitrary four layer
fibre structure.

Next, we present the polarization dependent coupling properties
of the tilted fibre Bragg gratings: 1d periodic index modulation in the
core of an optical fibre with a tilt with respect to the fibre axis that
enhances coupling of light from the linearly polarized core mode to
the contra-directional cladding modes. We prove that by controlling
the orientation of the core mode electric vector with respect to the
plane of the tilt of the gratings, one can couple either only to the radi-
ally polarized or to the azimuthally polarized cladding modes. This
is the first ever comprehensive theoretical description of the polar-
ization dependent guided cladding mode coupling properties of the
tilted fibre Bragg gratings.

Finally, we report the first ever effort to investigate the polariza-
tion dependent optical properties of randomly oriented single-wall
carbon nanotubes on the nanometre scale. The carbon nanotube films
are grown on the cladding of the fibre using a layer-by-layer tech-
nique. Weakly tilted Bragg gratings in the core of the fibre allows
in situ characterization of the film. We report that such a film ex-
hibits strong polarization dependent loss: radially polarized cladding
modes experience up to five times more loss than azimuthally polar-
ized modes for films of up to tens of nanometres thickness. This is the
first ever observation of the polarization dependent loss on a nanome-
tre scale thin randomly oriented carbon nanotube film. However, the
film exhibits no birefringence and the optical constants are strongly
thickness dependent.
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INTRODUCTION

Single-wall carbon nanotubes (SWCNT) are rolled up forms of graphene,
a two dimensional honey comb structure of carbon, and were first
discovered by lijima [1, 2]. Carbon nanotubes (CNT) can be metal-
lic or semiconducting depending on the orientation of the honey
comb structure of the carbon atoms with respect to the tube axis,
i.e. chirality. Nanotubes have exceptional electrical, optical, thermal,
and mechanical properties [3]. The direct bandgap semiconducting
nanotubes are in the very centre of the next generation transistor re-
search [4—6]. Very recently researchers have reported the manufactur-
ing of sub-10 nm CNT transistor which exhibits “unprecedented per-
formance” and outperforms the best silicon based devices in key met-
rics, e.g. diameter-normalized current density at a low operating volt-
age of 0.5V, and small inverse sub-threshold slope of 4mV/decade
[7]. Carbon nanotubes also have exceptional optical properties. Re-
searchers have studied nano-scale light emitters, detectors, antenna,
and photovoltaic devices made from the semiconducting nanotubes[3].
Carbon nanotubes have also been found to have exceptional nonlin-
ear optical properties due to the resonant excitonic dynamics [8, 9]. In
fact, the real part of the third order nonlinear susceptibility (Relxs])
has been theoretically predicted to be as high as 10 ®esu which is
eight orders of magnitude higher than that of the silica glass [10].
We are interested in the fibre based linear and nonlinear optical de-
vices utilizing the exceptional electrical and optical properties of the
Single-wall Carbon nanotube. Hence we limit the following discus-
sions within this scope.

The x3 is a complex quantity and is present in all materials. It gives
rise to the intensity dependent refractive index change - known as
the Kerr effect, saturable absorption, third harmonic generation, four-
wave mixing, optical phase conjugation, optical bistability etc. [11].
Researchers have extensively studied Carbon nanotube based fibre
lasers for ultrashort-pulse generation through mode-locking and Q-
switching [12—-20]. For these pulsed fibre laser applications, researchers
have used the saturable absorption property of CNT film or CNT-
polymer composite structure. Saturable absorption is a third order
nonlinear process which reduces the absorption of high intensity light.
Nanotubes exhibit two distinct wavelength dependent ultrafast satu-
ration absorption recovery times of 1ps [10] and 110fs [21], a sat-
urable absorption modulation depth of ~12% [16] and a low satu-
ration intensity of ~12.5MW/cm? [10]. Exploiting these exceptional
properties mode-locked laser with pulses as short as 113fs with 33.5nm
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spectral width has been reported [17]. Researchers have also incorpo-
rated carbon nanotubes in fibre structures for applications in wave-
length conversion using 10Gb/s Non-Return-to-zero signal [20, 22]
in four wave mixing process, in designing novel Kerr shutter for opti-
cal switching [23], and in nonlinear polarization rotators [22].

In all of these applications researchers have used two nanotube-
light interaction mechanisms: either by placing a very thin nanotube
or nanotube-composite perpendicular to the path of the optical field,
or through a guided wave mechanism for evanescent interaction us-
ing tapered or D-shaped fibre. However optical power greater than
few tens of mW damages the CNT film. For CNT-polymer composite
structures this damage threshold is even lower, which fundamentally
limits the long term stability and the maximum obtainable power
[24]. Additionally, for applications such as wavelength conversion,
the long interaction length between light and the CNT becomes im-
portant since the efficiency in these processes scales with the length
of interaction. Hence high linear absorption and the damage thresh-
old limit the use of the nanotube perpendicular to the path of the
optical field. By using tapered and D-shaped fibre both problem can
be circumvented since in these cases light interacts with the nanotube
through the evanescent field, to the detriment of mechanical robust-
ness, and additional processing, like polishing for the D-shaped fibre.
It is in these contexts our group has become interested in the tilted
fibre Bragg gratings (TFBG) mediated nonlinear interaction using the
standard telecom fibre with the carbon nanotubes deposited on the
cladding of the fibre. This technique gives precise control in tailor-
ing the interaction between light and the CNT film by controlling the
coupling mechanism using tilted gratings, without the need of any
mechanical reshaping of the fibre.

In 2011, members of our research group have published- as a proof
of concept- the results of two studies involving tilted Bragg grat-
ings mediated nonlinear optical interactions in standard telecom fi-
bre with Single-wall carbon nanotube deposited on the cladding of
the fibre. In the first paper, Villanueva et al. have used a pico sec-
ond pump-probe pulse experiment to show the ultrafast modulation
of the probe beam through the nonlinear modification of the TFBG
spectral response [25]. In the second paper, Shao et al. have shown
the wavelength conversion through a four-wave mixing process in a
TFBG inscribed fibre [26]. Both of these experiments have shown that
indeed, the TFBG inscribed fibre can be an alternative technology in
any fibre based nanotube mediated nonlinear optical interactions. To
further improve the results of these experiments or to exploit TFBG in
other nantoube based nonlinear applications we need to understand
the fundamental interaction mechanisms between the TFBG response
and the CNT deposited on the cladding of the fibre.
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TFBGs are special kind of fibre Bragg gratings, in which the grat-
ings are weakly tilted with respect to the fibre axis. The Fibre Bragg
grating (FBG) is a fundamental technology in the modern optical
communication[27] and many fibre based sensing platforms. Typi-
cally, the grating is written by side-exposing the fibre core to a UV
beam diffracted off a phase mask [28]. Due to the photosensitive na-
ture of the germanium doped core [29], the diffracted UV beam pat-
tern gets inscribed into the core through the weak modulation of the
core index, leaving the cladding unchanged. A tilt with respect to
the normal of the incoming UV beam allows inscription of the Bragg
gratings with a tilt with respect to the fibre axis [30].

A tilted fibre Bragg grating (TFBG) in a single mode fibre couples
forward propagating core mode light to the backward propagating
Bragg mode, the backward propagating cladding modes, and to the
radiation modes [31]. The tilt enhances coupling to cladding modes.
Researchers have utilized these unique properties in designing gain
flatteners [32], gain equalizers [33], in-fibre polarizers [34], fibre based
mode converters [35], and in-fibre spectrometers [36]. Laffont and
Ferdinand reported the first evanescent refractive index sensor using
TFBG in [37]. Since then researchers have reported a number of other
sensing modalities using TFBG in refractive index sensing [38, 39],
bend sensor [40], vector inclinometer [41], accelerometer [42], etc. In
all of these sensing modalities researchers were interested in the re-
sponse of the TFBG using unpolarized light. Polarization dependent
properties of both TFBG and Long period gratings were utilized in de-
signing bend sensors [40, 41, 43] and surface plasmon based sensors
[44-46].

Erdogan and Sipe in [31] presented the first detailed theoretical
treatment of the guided core mode to the radiation mode coupling
properties. Y. Li presented two different methods of tackling the same
problem in [47] and in [48]. In ref. [49] Dong et al presented a study
regarding the effect of the grating tilt angle on the coupling proper-
ties of the guided core mode to the guided cladding modes. They
used a number of assumptions including weakly guided approxima-
tion for both the core and the cladding modes. The weakly guiding
approximation for the core mode in a single mode fibre is a widely ac-
cepted technique. However the cladding modes are guided strongly
by the index difference of the cladding and the surrounding medium,
and thus weakly guiding approximation does not hold for this waveg-
uide. Hence, their work was only able to elucidate the coupling char-
acteristics qualitatively. Lee and Erdogan in [50] presented a more
comprehensive theoretical study of the coupling of the core mode
to the guided cladding modes. The transmission spectrum of Bragg
gratings with a weak tilt differs slightly depending on the relative ori-
entation of the core mode polarization to the gratings tilt. This minor
difference turned out to be a key factor in fulfilling the conditions

3
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of plasmon excitation in a gold coated fibre with a TFBG [45]. How-
ever Lee and Erdogan’s effort in [50] does not shed much light on
the nature of the individual resonance structure. Lu et al. presented
a numerical study in [51] in an effort to unify both the polarization
dependent coupling characteristics of the core mode to the cladding
modes and of the core mode to the radiation modes. For any sens-
ing applications, including surface plasmon, it is the guided cladding
modes which are of interest. [51] neither explicitly listed any polariza-
tion dependent coupling to modes nor elucidated the nature of the
individual resonance structure. Hence their work does not provide
any new insights into the coupling properties much beyond that of
ref. [50]. Hence, in our view, the existing scientific papers fall short
of presenting a complete polarization dependent description on the
nature of the coupling to the guided cladding modes.

In this thesis we develop a comprehensive treatment of the polar-
ization dependent TFBG coupling characteristic of the guided core
modes to the cladding modes. We feel that the theoretical framework
presented in the aforementioned references are exhaustive enough in
treating polarization dependent coupling to the radiation modes and,
hence, do not require any further investigation. However, the case of
coupling to the cladding mode is entirely different. The cladding of a
standard 1550 nm telecom fibre is a multimode waveguide and thus
can support many thousands of modes. In this respect none of the
previous studies explicitly lists the types and polarization nature of
the cladding modes or the coupling nature of two orthogonally polar-
ized core modes with respect to the grating tilt. Here we present such
a comprehensive treatment of the polarization dependent response of
the weakly tilted Bragg gratings by using exact field equations and
utilizing numerical integration techniques. We show that a weak tilt
differentiates between HE and EH modes and between TE and TM
modes; thus TFBGs allow selective coupling to modes with radial or
azimuthal polarization.

We also show that the hybrid cladding modes have preferential po-
larization orientation and by controlling the core mode polarization
vector orientation with respect to the gratings plane, one could couple
to modes of either polarization type. Moreover, there are spectral re-
gions for any single mode fibre, where the resonances of these modes
are spectrally well separated to be resolved.

Finally, we use this model to study the nanotube growth and to in-
vestigate the optical characteristics of nanotube films. Scientists have
studied the property of an isolated single nanotube [8, 9, 52, 53], a
highly aligned nanotube forest [54-58], or micrometer thick randomly
oriented nanotubes [59]. However, to the best of our knowledge, there
is no literature related to the nanotubes’ optical response in the scale
in between. Therefore, our work is the first effort studying the optical
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response of the randomly oriented SWCNT from a few nanometres
to a couple of hundreds nanometres thickness.

We begin our study by presenting the multilayer fibre model, dis-
persion relations, and field patterns in Chapter 2. We follow with
presenting the polarization dependent coupling mechanisms in tilted
Bragg gratings in Chapter 3. Armed with the knowledge of the these
details we present the result of the layer-by-layer growth of the SWCNT
in Chapter 4. We conclude our study with some after thoughts and
comments on the future direction in Chapter 5.



VECTOR MODES AND EQUATIONS

How do you solve a problem like [V x %—6’ x H = (»‘é’—)zﬁ]?
How do you hold a moonbeam in your hand?

— Oscar Hammerstein II, The Sound of Music

The standard single mode telecom fibre is a three layer cylindrical
structure which allows lossless propagation of a single mode in the
core. The cladding modes excited by the TFBG are guided by the in-
dex difference between the cladding and the outer medium. Due to
the minor index difference (~0.005) between the core and the cladding
[49], the core mode dispersion relations and the field expressions can
be very well represented by the weak guidance approximation [60].
In contrast, the cladding is a multimode waveguide and modes are in
general strongly guided by the index difference between the cladding
and the outer layer. Hence, for cladding modes, the weak guidance
approximation which results in scalar modes does not hold. More-
over, in order to completely understand the polarization dependent
interaction of modes with TFBG one needs to solve the exact vecto-
rial solution. There are a number of simulation software capable of
numerically computing the modal behaviour of any arbitrary struc-
ture using Finite Difference or Finite Element methods. However, the
modal data obtained from these software is not readily suitable to
study the modal interactions with the TFBG, and substantially more
calculations are needed. Hence we develop a complete analytical ap-
proach in trying to understand the mode distributions and the field
patterns. This chapter is devoted to presenting the mode solutions
and the field patterns of the fibre mode guided by the cladding.

In general, a radially stratified dielectric waveguide has two types
of mode: Transverse and Hybrid. The transverse modes have either
the axial electric field or the axial magnetic field equal to zero, whereas
for the hybrid modes both the axial electric and magnetic field com-
ponents are present [60]. A number of authors over the years tried
to develop the exact solutions of the guided modes in a three-layer
dielectric waveguide. Belanov et al. made the first such attempt in
references [61, 62] using the weak guidance approximation.Yeh and
Lindgren [63] proposed an efficient matrix method to find the dis-
persion relation for any radially stratified dielectric waveguide. Tso
et al. developed an exact vectorial solution of a three layer structure
using the Debye potentials [60, 64]. Erdogan in [65] presented the
field equations and the dispersion relation for hybrid modes with az-
imuthal order of one. The modifications of the equations as presented
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by Erdogan for a generalized hybrid mode are not trivial. We use Er-
dogan’s notations and Tsao’s formalism to derive all equations. Our
solutions are general and can be applied for any index distribution
and for any guided mode of any order or type.

We begin this chapter with the presentation of the core mode field
expressions followed by those of the cladding modes. The fundamen-
tal procedure to derive the expressions are the same for both the core
and the cladding modes. Hence, we only show the detailed deriva-
tion for the cladding modes. We then present the algorithm of solv-
ing the dispersion relation in section 2.3. We present the polarization
nature and field distribution of the cladding modes in the section 2.4.
We conclude this chapter with the presentation of the equations for
a four-layer structure in the section 2.5 that is used to analyse the
behaviour of a coated fibre.

X

R ,

\CB}/

Figure 1: The generalized three layer fibre structure

2.1 THE CORE MODE IN A THREE-LAYERED STRUCTURE

We are interested in the interaction between the fundamental core
mode and the cladding modes in a standard telecom fibre, e.g. Corn-
ing SMF-28. Such a fibre has a low index difference (~0.005) between
the core and the cladding. Hence, the core mode expressions can be
simplified using a weakly guiding approximation [66]. Figure 1 repre-
sents the generalized structure of a three layer cylindrical waveguide.
For such a structure, with a;, a; and ny, n; as core and cladding



2.1 THE CORE MODE IN A THREE-LAYERED STRUCTURE

radii and refractive indexes respectively, the fundamental HE;; mode
eigenvalue equation is [64]

Jolaiucorel . Kolaiweorel

ajUcore)1laiucorel a1weoreZKolaiweore!
where, | is the Bessel function of the first kind and X is the modified
Bessel function of the second kind, ucore = (271/A)(n¥ — ngffcore)%,
and Weore = (21/A) (M2 0re — n%)% are the phase parameters of the
fundamental core mode with the effective guide index of Nefrcore
at a wavelength of A. This equation in general contains many roots
(Neffcore), and can be solved once the value of all parameters are
known. However, in a single mode fibre the core is deliberately de-
signed to be small enough to allow the lossless propagation of only
the fundamental mode (HE;)in the designed wavelength of opera-
tion. The fields for the weakly guiding approximation, in the cylin-
drical coordinates (%, , 2) for the HE;; mode can be expressed as

Core region: 7 < a)

=0 (2.1.1)

peore . El(])ucorelo[ucofer} cosld + ] (2.1.2a)
Eg}ore = —E;éucoreJO[ucoreﬂ sin[¢ + ] (2.1.2b)
n .
Hgore = E(];(])Z_:)ucore](){uco‘reﬂ sm[d) + 11)] (2'1'2C)
n
HETe = El(’)z‘;umre]o[ucmer] cos(d + ] (2.1.2d)
Cladding region: a; < v < az
ELOTE = El(])BWcore(_KO[Wcorer]) cos([d + ] (2.1.32)
Eg}ore == wEléBWcore(AKo[Wcoreﬂ) sin{¢$ + ] (2.1.3b)
n .
Hgore == E;;‘z‘LBWcorQ(_‘KO[WCOTEF]) Sln{d) + lb] (Z'I'BC)
0
n .
HG™ = EL 2 Brweore(—Kolweorer) cosl +bl)  (21.3d)
where B = '“uéorell la; Ucore]/wgoreKl larweorel, Zo =377 Q is the

impedance of the free space and the azimuthal angle ¢ is measured
with respect to the vertical X-axis. The Field amplitude coefficient is
set to

i
2Z,b 2
g ': 0 } (2.1.

@ [uga?)?uoai] 4)

where
2 2
n — T
b = e:zorenz 2 (2.1.5)
172

in order to set the total power carried by the mode to 1 Watt [67]
using
2n
P = 0.5 Re{

o
J(ErH;‘b —EpHp)rdrdd} =1W (2.1.6)
00
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The integral in the radial direction is the summation of two inte-
grals involving the field expressions in the core using relations in
equation set 2.1.2 and in the cladding using those of equation set
2.1.3 respectively. Since the field of a core guided mode exponentially
decays in the cladding and the cladding diameter normally is much
larger than the penetration depth of any such field, the upper limit
of the radial integration reduces from oo to a;. The axial field com-
ponents of a well guided HE1; mode are negligible in comparison to
the transverse components. Accordingly, the HEy; field has linearly
polarized X- or Y- polarization state. For { = 0 ({p = 7/2) the expres-
sions in equations 2.1.2 and 2.1.3 expresses X-polarized (Y- polarized)
field corresponding to even and odd mode respectively. In general
due to the cylindrical symmetry any arbitrary value of 1\ corresponds
to a valid solution. We identify the two orthogonal polarizations by
taking } = 0 or psi = n/2.

2.2 CLADDING MODE IN A THREE-LAYER STRUCTURE

Cladding modes are not weakly guiding and hence a full vectorial
description of these modes are required. Due to the cylindrical sym-
metry of the structure we adopt the polar coordinate system (¥, b, 2)
with its Z-axis aligned to the waveguide axis. In general, the electric
and the magnetic fields in polar coordinates for each layer can be
represented by [60]

E = tow/r0p — (B/we;i)0®/dr] — low/or

+ (B/wei)d®/Tdd] — 2[(k2n? — B2) /iwe;| D (2.2.1a)
H = t00/rod + (B/wn)d¥/dr] — bod/or
— (B/wp)d¥/rdd] + 2[(k2n? — B?) rwpl¥ (2.2.1b)

where ¥ and @ denote the scalar Debye potentials and 1 -= v/—1. The
E and H satisfy the following wave equation [60]

(V2 4+ k2n? — %) {E{} =0 {i=123)} (22.2)

The solution to the wave equation above for a cylindrical structure is
[60]
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®, = ArJilurr[Exphld] (2.2.3a)
®; = {AzJiluzr] + B2 Yi{uarl}Expild] (2.2.3b)
®3 = B3Ki[w3r]Exp[ild] (2.2.3¢)
¥y = CiJihuirlExphld] (2.2.3d)
W2 = {Cziluar] + D2Yi[uzr]}Exphild] (2.2.3€)
W3 = D3KiwarlExphld] (2.2.3f)

Where the subscript (1, 2, 3) denotes the layer number and A, B, C,
D are amplitude coefficients. In the above equations J,{u;r} is associ-
ated with the convergent wave and is singular at the infinity r = oo;
Yi{uir] and Ki[w;r] are associated with the divergent wave and are
singular at the centre r = 0. 1 is the azimuthal index and is a non
negative integer due to the symmetry consideration. The cladding
supports rotationally symmetric TE and TM modes [68]. However,
no ¢ dependent transverse mode can exist due to the non vanishing
E; and H, components. These modes are known as hybrid modes.
Hence the cladding modes consist of TEom, TMom, HEim, and EHym
modes. In our formalism “1" refers to the azimuthal order and “m”
refers to the radial order of a mode. The exact expression for each
vector components is found using the appropriate boundary condi-
tions.

2.2.1  Hybrid Mode Field Expressions and Dispersion Relation

Hybrid modes have both E, and H,; components. The substitution of
expressions for both scalar Debye potentials ® and ¥ from the eqn
2.2.3 into the eqn 2.2.1 gives

Core region: r < aj

1
Insr

1
Egp = A@(Amz}l[mﬂ + Cinfr J{lwit)Explld]  (2.2.4b)

Er = (Cy lzn‘;‘h[ul ]+ Arruyoz]{ [ur T Exphld] (2.2.4a)

A
E, = mufczh[uﬂﬂixphld)] (2.2.40)
He = Z(A i) — Crrwg o J{fu vl Exphilo) (2.24d)
1 -
He = —(CronJilurr] — Arrus Ji [ rl) Explild) (2.2.4¢)
H. = ——ufoy Jius rlExplld) (2:2.4H

g
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Cladding region: a1 <1< az

1

E, = ln%T(Czlznéh{uzr] -+ Dzlzn%Yi [uaT]
+ruz02(AzJ{[uzr] + B2 Y{[uzr]))Explild]
1
Ep = ——-(Az202]{[uar] + BaozYi[uzrl
nZT
+ n3ruy(CoJ{fuzr] + D2 Y [uzrl)) Exphld]
2
Ex = =22 (Aziluzr] + B2 Yiluar) Expiulg)
nsp
Hy = (A2 luzr] + B212Y1 fuz1]
—1up07 (CoJ{[uzr] + D2 Y{[uzr]) ) Explild)
He = }(sz Jiluzr] + Dyoq Ye[uarl
—ruz (A J{[uzrl + B2 Y{[uzr])) Explild]
2
H, = _ufg‘ (CaJiluzr] + D2 Y [ua ) Expild]

Outer region: r > a;

1
Er = @(Dﬂzn%l(l[wgr}
+ B3rwia2K{ [wsr]))Expid]
1
Ey = ——(B K
) n';-rl 302K fwar]
+ D3ngrwsK{lws ) Explild]
Biwio
Ez = 222K [wsT]) Explild)]
nsf
H, = .13;(8312K1[W3r] — D3rws o K{ w3t Explld]
1
He = —(D3oiKilwsr] — B3rw3K{[wstHExplild]
Diwico
H, = J—iﬁr”——lKl[W3r}Exphlcb}

where the following relationships hold

(2.2.5a)

(2.2.5b)

(2.2.5¢)

(2.2.5d)

(2.2.5¢)

{2.2.5f)

{2.2.6a)

(2.2.6b)

(2.2.6¢)
(2.2.6d)
(2.2.6e)

(2.2.6f)
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o1 = ilners/Zo (2.2.7)
o2 = ilnesr o (2.2.8)
1 1
uzy = 2 w2 (2.2.9)
2 1
1 1
U3y = oz + o2 (2.2.10)
2 3
2n )
uj = 5 niz —nZ., [je(1,2) (2.2.11)
2n
w3 = T\/ngff —n? (2.2.12)
B = g_ﬁl;_‘ifi (2.2.13)

The field amplitude coefficients Ay,A3,B>,B3,Cy,Cy, D7 and D3
weigh the contribution of each term. The exact field expressions can
only be determined after relationships between these coefficients are
derived. The field expressions in equation 2.2.1 are correct for each in-
dividual layer. A consistent solution for the whole structure requires
these relations to satisfy the electromagnetic boundary conditions, i.e.
Hg, E¢, Hz, and E; must be continuous at each interface. The bound-
ary continuity conditions at each radii r = ay and v = a; result in
a total of eight equations corresponding to eight tangential compo-
nents. For a non trivial solution to exist for the wave equation 2.2.2,
the determinant of the coefficient matrix of the amplitude coefficients
must be equal to zero [60]. This gives the following expression

Co=¢ (2.2.14a)
uzpifaz] (g—‘%—wﬁ + }K) + Jrilaz]) — Kqulaz) — le[gz}
Co =
Kuzp  Ju uzirfaz]l | usaqilag]
o2 (uzpl[az] (—Lza]n] -L%uznz) + T )
(2.2.14b)
Ju Knfus, uzirilaz]l  uzzqilaz]
C[ = G]{uzpl[GZ] ( uiz B ﬂlzn% ) - 2101] = - : 0‘2 2 }
= Kni KnZaiias] P
pulazhuz (Sghuamss + Iah) o jrfag] — Biled — miies
(2.2.14¢)

where the following relationships hold

 Jilayw]
DRI NPT (2.2.15a)
K = _Kilaaws] (2.2.15b)

 waKlazwsl’

13
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The derivatives of the Bessel functions are with respect to the ar-
guments. The four Bessel function cross products used here are ex-

pressed as
pilr] = hhiruzlilasuz) = Jilayuzl Yy fru;)
ailrl = ilruzlY{layuz] = Jilajuzl Yy [ruz]
rr] = J{rueIilarug] — Julayual Y ru,]
sulr] = J{ruzlY{{laruz) — Jilayua]Y{ ruy]

(2.2.150)
(2.2.15d)
(2.2.15€)
(2.2.15f)

We then derive relationships between amplitude coefficients of field
equations by solving the system of linear equation involving the elec-
tromagnetic boundary conditions. Fields as expressed by equations
(2.2.4), (2.2.5), and (2.2.6) are complex. Only the real or the imaginary
parts of these complex quantities represent the real field. By using
Euler’s identity and defining all relations in terms of E![* = C; the

field expressions become
Core region: v < ay

Ecl Elm COGZXLL]IZ T"LL] + 111 }COSH(I) +¢}
gl ool e Dsini + 0l
nlr
HeL - {HZOUL rug] w'u‘{{{m‘]}sin[kb 0l
HE! = EXMicow Jifrus ] — m}cos L + ]

Cladding region: a1 < v € a;

LFuzpilrl — qilr])
Zmz
_ 02(Ganfugnifr] — Longsilr])

5 Jcos(ld + ]

2Inins

ESt = EMmarud i laju J{—

1
ES = ELT najufifaiw] {-Z-(quznlﬂ — s [r])

Gapilrl _ Coqulrl ., .
2nsr niru Jsinlld + )

oy (Fauprir] — si[r])
21

}}sin{ld + Y]

+ o2

HE = EPmaqudfilaiug )

ionjqilr]  iGapilr]
2niru, 2r
ioy (Fauzpilr] — qulv])
1} 5
TuZ

+ I

Hﬁ} = Etf{‘na;u%]l[a;u

1 1, iong
— _iGZquLET] -+ M

[ tcos[ldp + ]
2 Zn%

(2.2.16a)
(2.2.16b)

(2.2.16¢)

(2.2.16d)

(2.2.17a)

(2.2.17b)

(2.2.17¢)

(2.2.17d)
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Outer region: a <7

pel _ Elm:rtmu%u%h[aiuﬂ _ F3lK[rws)
T et Kilazws] 2rwi
G Ky
_ M}ms[w + Pl (2.2.18a)
2[1’13“)‘3
pel Elmﬂmu%u%]t[a]ul] F3K{[rw;3]
¢ el Kilazws] 2ws
G K
InsTwg
Het :Elmnmu%u%]t[muﬂ iF301K{[rws]
T et Kilazws] 2lws
iG31K
_ }—3—1[;“)—31}511’\[[(1) + 1) (2.2.18¢)
2rws
Hel Elm—na]u%uﬁh[mud iF301 K [rw;]
¢ cl KL[G2W3} ZTV\)%
iG3K/{
163 erﬂ}cos[l(b + ] (2.2.18d)
2W3
where
uz1lp0
Fr=]— _i‘_oz_z_ (2.2.19a)
Gy =]l + % (2.2.19b)
1
a
F3 = —Fopilaz) + C_]_L[__;_] (2.2.19¢)
uz
Gapilazl | Coqilazl
2 2p1iaz oqiiaz
Gs =n3[— n% 4 s ] (2.2.19d)

In these equations ELT" is the cladding mode amplitude coefficient.
The value of this coefficient is chosen in a manner as to allow the to-
tal power carried by the mode to be 1W using equation (2.1.6) . Once
the mode index is calculated from the dispersion relation of equa-
tion (2.2.14), EL* can be easily calculated using a standard numeri-
cal integration technique. For the cladding modes, the radial part of
the integration is the summation of three integrals for core, cladding,
and outer regions. All integrals involving field equations are highly
oscillatory in nature and need a careful selection of right numerical
techniques for fast computation. We computed all numerical integra-
tions using Gauss-Kronrod quadrature rule and a global adaptive al-
gorithm [69g].

For ¥ — 0 equations (2.2.16), (2.2.17), and (2.2.18) express the odd
modes. For ) = /2 these equations represent the even modes. Hence,
a hybrid mode is degenerate between even and the odd mode. The
field pattern of the even and the odd modes are rotated with respect
to each other by pi/2l, where 1 is the azimuthal order of the mode.

15
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2.2.2 TE and TM Mode Field Expressions

TE mode has no 2 component of the electric field, whereas TM mode
has no H,; component. These are represented by choosing the Debye
potential @ = 0 for the TE case and ¥ = 0 for the TM case in equa-
tion (2.2.3). By using these two values in equations (2.2.4), (2.2.5), and
(2.2.6) and utilising the boundary continuity conditions we can solve
the equations for the TE and for the TM cases respectively. After de-
veloping the relations between the amplitude coefficients we set 1 = 0
to obtain the final expressions for both TEgm and TMom cases.

For TEom modes the radial and the axial components of the electric
field and azimuthal component of the magnetic field are zero. For TE
modes, the field expressions for the rest of the components are as
follows

Core region: v < a3

Ep = —ElF™uJiuqt] (2.2.20a)

H, = ETE My et Jolu (2.2.20b)

Zy
Cladding region: a1 <1 < az

1 . silr]
Ep = EL M smuffoluarluzar (Jrilr — =) (2.2.20)
n ST
He = ELEm Dt oy asuzan (il + 20) (2.2.200)
Outer region: ap < v
E. - _gTE mudusjolurailay , qilaz)
¢ 2w3Kolwsas] uz
— Jpilazl)Kglwar] (2.2.20e)
H, - ETE mMerruiusfolurarlar qilay]
" 2Zow3Kolwsas] uz
“““““ Jpilazl)Kglwsr] (2.2.20f)
ELE"“ is the normalization factor for TEp,, modes and can be nu-

merically calculated using equation 2.1.6.

For TMom modes, the radial and the axial components of the mag-
netic field and the azimuthal component of the electric field are zero.
The field expressions for the rest of the components are as follows

Core region: r < a;

uyZoJilru
“ETM,mi__l__Q_}z(i__‘l (2.2.21a)
n;

Hy = »‘--ELM'“‘m Joluyr] (2.2.21b)

E, =
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Cladding region: a; < v < az

E. _ pTMm arnesrruZoJolarurl(Jnfugrifr] — nds [r])
' ct Zn‘;-n%

(2.2.21¢)

_g™™m aymudJolajwil(Jnduzri[r] — nds[r])
el

He
2n%

(2.2.21d)

Outer region: a; < r

ET™Mm @1 Nerrmud ZoJolarwil(Jniuzrilaz] — ndsilaz])Krws
cl

E pranandg
T 2Kn#niw;Kjlazws)
(2.2.21€)
W, — fTMm armudJolaruil(Jnfusrilaz] — nisilaz)Kg rws)
kg ct ZKH%W3K0{02W3]
(2.2.21f)
Here, EZlM’m is the normalization factor for TMg,,, mode.

2.3 SOLVING THE DISPERSION RELATION

In general, a well guided mode is lossless if there is no material ab-
sorption. For a lossless case the guide index, nef¢, for any mode is
a real number. However, a well guided mode can become lossy due
to the presence of the material absorption or near and beyond cutoff
even without the presence of any lossy material. Under these circum-
stances the guide index, n.rs becomes a complex quantity, where the
complex part is proportional to the loss coefficient of the mode. We
adopt a mode searching mechanism which is capable of handling
both scenarios.

2.3.1 For Lossless Case

The dispersion relations in equation (2.2.14) is transcendental and
contains many solutions. Typically, the challenge is to know which
solution corresponds to which kind of mode for the given waveguide.
Snitzer in [68] was first to propose a mode classification scheme for
an all dielectric optical waveguide. His scheme was based on the sign
of the coefficient ratio which expresses the relative strength of E,
and H; components in a mode. Safaai-Jazi and Yip [70] revealed that
Snitzer’s scheme is only consistent for the core modes; for cladding
modes the sign changes arbitrarily and hence can not be used for the
classification of the hybrid modes in the cladding region. A number
of other authors including Safaai-Jazi and Yip took on this issue and
proposed various techniques for the classification of modes in cylin-
drical waveguides with different index distributions [71, 72]. Kapoor
and Singh presented a detailed comparative study of various mode

17
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classification schemes in [73] and proposed a universal technique of
mode designation which is consistent with the specific solutions pro-
posed by Safaai-Jazi and Yip, Morishita, and Yeh for different cylin-
drical waveguide structures. We follow this technique to seek the
appropriate modal solutions. According to ref. [73], the dispersion
relation in equation (2.2.14) is a quadratic equations of both ] (equa-
tion (2.2.15a)) and K (equation (2.2.15b)). The root of the quadratic
equation in terms of K containing the positive sign(negative sign) de-
scribes the HE modes (EH modes). For 1 = 0 the root containing the
positive sign(negative sign)describes the TE modes (TM modes).

HE solution

EH solution

1.408 T 141 1.412 1414

Heff

Figure 2: A graphical method for solving the eigenvalue equation (2.2.14)

The basic idea of the mode solution technique is to look for a
guided index, n¢ss which is smaller than the highest index in the
structure, generally the core index (n;), and bigger than the lowest in-
dex of the structure, generally the index of the out most medium (n3).
There are many ways the transcendental dispersion equation (2.2.14)
can be solved. We adopted numerical techniques using Newton’s
method. In Newton’s method a “guess” root is used as a seed to find
the root of interest. The speed of convergence in Newton’s method de-
pends on the quality of the guess root. We use the “MeshFunctions”
of the “Plot” command of Mathematica to extract zero crossing of
the dispersion equation, and use these zero crossing points as the
seed solutions. Since the values returned by the “MeshFunctions” are
very close to the actual solution, this technique guarantees fast con-
vergence to the highly accurate (20 digit precision) solution. Figure
2 shows schematically the solution of the dispersion relations for the
hybrid modes with L = 1.

Figure 3 shows a typical solution for the HE modes of the first six
azimuthal orders. The solution was obtained using a; =4.1um, a; =
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Figure 3: Typical solutions of the eigenvalue equation (2.2.14)
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Figure 4: The even and the odd azimuthal order solutions are nearly degen-
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62.5um, ny = 1.450699, n; = 1.444024, n3 = 1.0 at A = 1566nm. It is
evident from the plot that the lower order radial modes, i.e. modes
with higher effective indexes, have less spacing than the higher order
radial modes. Figure 4 shows a part of the same solution. This plot
shows that the modes of even azimuthal order (including 0 order
modes) are nearly degenerate, so is true for modes of odd azimuthal
orders.

1.3937! « HE130 .
« HE727 M
g .
1.3933 .t
A
13929:e  * * T 0 o« m T :
1. 1.1 1.2 13 1.39
n3

Figure 5: The variation in the effective index as a function of n3

We also check the consistency of the solution by varying the index
of the out-most medium, njz, from that of air to index close to the
cutoff of two arbitrary HE modes (1 = 1 and 7) with nearly equal ef-
fective index in the air. The result is plotted in Figure 5. The effective
guide indices of both modes change with n3. The sensitivity of the
modes, i.e. the rate of change of the guide index as a function of n3 ,is
not constant for the entire range and in this case modes become max-
imally sensitive close to the cutoff, i.e when n3 approaches the guide
index of these modes. Moreover, the sensitivities of these modes are
nearly equal despite being of two different azimuthal order.

2.3.2 For Lossy Cases

The approach to find the complex index is similar to that of the loss-
less case. The mode index for a lossy case, due to the material absorp-
tion or beyond cutoff, is complex. The material absorption for the core
and the cladding in the telecom band are negligible and are ignored.
Hence only an absorptive outer medium can introduce loss factor to
a well guided cladding mode. Since the evanescent part of a mode
overlaps in the outer lossy medium, the effective imaginary part of
the mode guide index should remain at least a couple of orders of
magnitude smaller than the imaginary part of n3. Similarly, the per-
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Figure 6: The imaginary part of the guide index for azimuthal order 1 =0, 1;
n3 =13+10535

turbation to the real part of the guide index due to the presence of ab-
sorption is negligible in most cases. However, while the perturbation
on the imaginary part of a mode index is small, it still have large ef-
fect on the resonance amplitude of the TFBG transmission spectrum.
When there is a strong absorption due to certain resonance condi-
tions, e.g. in case of the surface plasmon based sensors with over 40%
of the modal light propagating in the outer layer, the strong interac-
tion between the modal field and the lossy medium modifies even
the real part of the index significantly as expected according to the
Kramers-Kronig relation [74].

Like the lossless case, we employ Newton’s method to find the
transcendental roots for the lossy case. However there is a key dif-
ference: the graphical method is not readily suitable to find the first
approximation of the complex root of interest. Complex n3 makes
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Figure 7: Im n.¢¢ for EH modes with nz = 1.3 +10.1

the phase parameter w, complex and results in a complex value for
the dispersion relation. However in the case of a weak interaction,
the first guess of the real part of the guide index can be found using
the graphic method described in the previous section which still re-
mains very close to the real part of the final solution. Once the first
guess of the real part is found taking the real part of the dispersion
equation, the Newton’s method is then used to find simultaneous so-
lutions involving the real and the imaginary part of the dispersion
relation. In case of strong interaction, or if higher precision is needed,
we take an iterative approach: we use the complex index found by us-
ing steps above as the guess root for successive iterations and again
simultaneous solutions for the real and imaginary part of the disper-
sion relation are sought.

Figures 7 and 6 show two example cases with lossy third layer. In
both cases the imaginary part of the n3 is very large and corresponds
to large loss coefficients of & = 4mnimg/A = 401225cm~ ! (n3 =
14+ 0.51) and 8024.5cm ™1 (n3 = 14 0.11). The reason for choosing such
a large imaginary index is to show the consistency and the accuracy
of the model. We make two interesting observations here: first, for the
same imaginary value of n3, the EH modes (and TM modes) are more
lossy than the HE modes (and TE modes). This is consistent with the
observation made in reference [75] for the planar waveguide. Second,
the higher order radial modes carry more power in the evanescent
tail than the low order modes and hence acquire higher loss factors as
expected [39]; however, the azimuthal order of modes has negligible
effect on the imaginary part of the index. Hence, nearly degenerate
odd azimuthal order modes and nearly degenerate even azimuthal
order modes can be thought of as having the same imaginary guide
index.
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(a) — HEq
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Figure 8: Plots of the local Poynting vector magnitudes as a function of ra-
dius of (a) HE 1 m—1toa, ®) EHim—11t04, () TEpg, TEge, TMg3,

TMog modes.
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2.4 MODE FIELD AND THE POLARIZATION PROPERTIES

In Figure 8 we present the local Poynting vector magnitude of a few
low order (1 = 1 and 0) modes. The values were calculated using
the following parameters: a; = 4.1lum, a; = 62.5um, n; = 1.45005,
ny = 1.44359 n3 = 1 at A = 1586nm. In this case, HE modes have a
peak localized in the core whereas EH modes have very little light in
the core. Transverse modes also have significant light in the core. In
general, the coupling characteristics of any guided mode to another
guided mode depends on the modal overlaps of the modes of interest.
It will be shown in the next chapter that modal overlaps, and by exten-
sion, the coupling coefficient, depends on the amplitude of the field.
In general, coupling coefficients, from core to the cladding modes in
this case, are directly proportional to the field amplitudes in the core.
Figure 9 depicts the fraction of power carried by each mode for the
first ten azimuthal orders in the core. TEg,, and TMg,, modes have
comparable power in the core. The situations are entirely different
for hybrid modes. The fraction of power in the core for HE and EH
modes are comparable only for high radial orders; for modes with
low radial orders, the fraction of power in the core changes arbitrar-
ily. These characteristics infer the necessity to treat such a structure
as an exact three layer structure. Clearly, a perturbation approach for
mode solution [76] (where the three layer structure is reduced to a
multimode two layer one} or weakly guiding approximation would
fail to elucidate the effect of the core on the cladding modes field
distribution and coupling coefficient.

At this point we want to discuss the polarization properties of the
cladding modes. As mentioned in the previous section, azimuthally
non-variant, i.e. no ® dependence, the TEp,, modes have no radial
electric field component, hence the modes are always azimuthally po-
larized and as a result the electric field vector in the cladding outer
layer is always tangent to the surface. The TMom modes have no az-
imuthal electric field components and as a result modes are always
radially polarized. In this case the field at the cladding outer bound-
ary is perpendicular to the interface. Figure 10 presents the vector
field plot of TEp19 and TMyp19 modes in the cladding region.

Hybrid modes have both radial and azimuthal components. Hence,
by default, these classes of modes have no preferred polarization. The
classification of hybrid modes based on the polarization properties
was first proposed in [77]. However this view is problematic and is
particularly inconsistent for the cladding region [70, 72]. Morishita
noted that the polarization properties change remarkably based on
the index distribution for the same structure [71] and proposed a
new classification scheme by further dividing the mode types. In our
view such a scheme provides nothing beyond negligible taxonomical
advantages at the price of added complication. Hence we adopted
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power in the core than modes with low azimuthal order. In gen-
eral, only higher order radial modes for identical azimuthal order
HE and EH modes carries similar amount of power. This general-
ization breaks down for low order radial modes.
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Figure 10: The vector field plot of the electric field of (a) Ttoio and (b)
TMo1o cladding modes in the cladding. A transverse electric
cladding mode is always azimuthally polarized whereas a trans-
verse magnetic mode is always radially polarized.

the universal classification scheme solely based on the sign of the
solution of the dispersion equation [73]. To understand the dominant
polarization behaviour of the hybrid modes we calculate the fraction
of the total power carried by the radial components of the electric
field. By default, then, the azimuthal electric field component carries
the remaining power based on the definition of the Poynting vector
in the axial direction. The more dominant the radial component is,
the more “TM-like" the mode is. Power in the radial component can
be calculated using the following equation

OL'—-;8

E Hjrdrdd

Fraction of power carried by E, = (2.4.1)

TotalPower

Due to our choice of the normalization conditions the total power
carried by each mode is 1W. In Figure 12 we present our calculations
for hybrid modes with L = 1 to 8. The plot shows that, in a step index
standard telecom fibre, in case of EH modes (HE modes) with lower
effective indexes, i.e. higher order radial modes, for any azimuthal or-
der, most of the power is carried by the radial component (azimuthal
component) of the electric field vector. This remains consistent re-
gardless of the wavelength of interest. Hence for all practical purpose
HE modes (EH) modes in these fibres could be thought of primarily
azimuthally (radially) polarized.

Another useful mechanism to visualize the polarization properties
of the modes is to plot the vector field orientation at the cladding-
outer layer interfaces. Figure 11 shows such a plot for HE ;5 and
EH; 25. In this case P = 7/2. It is clear from the image that for the
HE (EH) mode the electric field vector is tangent (normal) to the sur-
face. This view is consistent for any higher order radial modes for
any azimuthal order. In fact, the polarization vector for HE modes at
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Figure 11: The intensity (a & c) and the vector field plots (b & d) in the
cladding region for HEy35 and EH125 respectively for W = 7/2.
A pair of HE and EH modes of same radial and azimuthal order
have exactly same intensity distribution and are mutually orthog-
onal. However, the underlying field pattern is very different from
each other: HE is more TE like and EH more TM like

the cladding outer boundary at the intensity maximums are always
tangential whereas for the EH case the vector is normal to the surface.
As shown in Fig 12, for low order modes with guide index close to
the core for each azimuthal order, HE modes contain a maximum of
50% TM and vice versa.

2.5 CLADDING MODE IN A FOUR-LAYER STRUCTURE

Figure 13 shows a generalized structure of a four layer fibre. There is
nothing special about a four layer structure compared to a three layer
structure. The field equations still need to satisfy the wave equation
(2.2.2). The Debye potentials ® and ¥ are now expressed as
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Outer region: v > a3
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Figure 14: Intensity distribution of the Tty cladding mode in a four layer
structure. Here a; = 4.1um, a; = 25um, az = 25.05um. The
refractive index (n3) for the third layer is 2.1. Please note that
smaller radii are chosen for the ease of visualization of the field
intensity in the third layer. The third layer is too thin to be ob-

servable in the figure, however the effect on the field is clearly
visible.

The rest of the procedure remains exactly the same as the three
layered case. There is, however, one notable difference. For the three
layer case, in general, we seek a cladding mode effective index value
which lies between n3 and n;. However, in a four layer case the index
of the third layer can be lower, equal, or higher than the guided index
of interest. This is especially of interest when we try to use this model
for finding the unknown index of a very thin third layer. The above
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expressions are valid for case when n.¢t > ns. A very thin high index
(n3 = n,) third layer does not result in the cutoff of the guided mode
in the cladding. If the n3 > n.¢s, the phase parameter uz becomes
imaginary. To mitigate this problem we utilize the phase parameter
w3 = Zﬂ/?\(n‘sz — nf]% which is real in this case. Accordingly, we
choose Bessel functions 1 and K for the third layer in equation 2.5.1
instead of Bessel functions J and Y along with phase parameter w;
as argument [60] of these Bessel functions. This choice keeps all ele-
ments real and the field expressions and dispersion relations get mod-
ified accordingly. At the cross over point corresponding to ness = N3
the solution for these two distinct expressions must agree with the
either choices of the Bessel functions and the phase parameters for
the continuity of the model. Mathematically at the crossover points

the following asymptotic expressions are used, where p — 0

Llp] = (g)l/rm 1] (2.5.6a)
1{fp] = 0.5(5)' /Ty (2.5.6b)
Kip] = o.srm(g-)—‘ (2.5.6)
K!fp] = —0.251 L + 1](%)—‘“ (2.5.6d)
Jpl = (B 1) (2.5.6¢)
Jipl = 05(5) 1 /T (2.5.6f)
vilpl = —(yru(®) (2.5.68)
Y{lpl = -(gg)r[w 1}(—2—)””‘ (2.5.6h)

Here, I'[x} denotes the Gamma function and is equal to (x — 1)!



COUPLING COEFFICIENT AND TRANSMISSION
RESPONSE

The gratings tilt breaks the azimuthal symmetry of the fibre struc-
ture and enhances coupling to the cladding modes even with higher
azimuthal order. TFBG couples the forward propagating core mode
to the backward propagating cladding modes. In this chapter we uti-
lize the field expressions presented in the previous chapter to show
that, the cladding mode coupling can be controlled by controlling the
orientation of the linearly polarized core modes with respect to the
plane of the tilt of the grating. We present the coupling mechanism
in section 3.1. We then present the transmission response of a TFBG
using the coupled-mode theory and show that the two orthogonal
polarization states (X- or Y-polarized) of the core mode excite a pair
of spectrally separated cladding mode resonances made of either EH
or HE modes, and thus TFBG allows for the selective excitation of
modes with the radial or the azimuthal polarization.

P ’ VA
ésl /////  Core

Figure 15: Configuration of the X-tilted gratings. “P” and ”S” refers to the
orientation of the P-polarized and S-polarized core mode electric
vector respectively.

3.1 COUPLING COEFFICIENT

Due the weak index modulation of the gratings the coupling mecha-
nism can be well modelled by the coupled mode theory. Following the
definitions of Erdogan and Sipe [31], the coupling coefficient between
two interacting modes in the presence of dielectric perturbations Ae
can be expressed by

27

Kby (2) = (w/4) J Ac(r,d,2,0)E: (1, &) - E3(r, d)rdrdd (3.1.1)
[4]
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where the superscript t denotes the transverse coupling coefficient
and w is the angular frequency in the free space. The gratings intro-
duce only weak perturbation, hence the longitudinal coupling coeffi-
cient is two orders of magnitude smaller than the transverse compo-
nents. Therefore, in this analysis we ignore all longitudinal interac-
tions. Also we assume that our grating tilt is in the x-z plane. The di-
electric perturbation due to the presence of the gratings Ae(x, y,z,0)
for the TFBG can be expressed as [31]

Ae(x,y,2,0) = 2eonidnix,y,z)
= Zeon%wcos(Zng’)
= Zeonf(rv cos(2Kg4{zcos 0 — x sin 0))
= eon%c{exp[iZKg(zcose ------ xsin6}]
+exp[—i2K4(z cos 0 — x sin 0]}

(3.1.2)
Converting all elements to the cylindrical coordinates
= Ae(r,0,2,0) = eonj ol{expli2K4(zcos @ — rcos ¢ sin 0)]
+expl—i2K4(zcos 0 — rcos ¢ sin 0)]}
= 7;T:)‘;;;:;l{exp[iZKg {zcos® — 1 cos ¢ sin 8)]

+expl[—i2Kg(zcos 0 — vcos psin@)]} (3.1.3)

Here 8n(x,y,z) = njovcos(2K4z’) is the induced index change at
the core, o is the slowly varying gratings profile and taken to be a
constant for the uniform grating, z’ is the axis of the grating which
makes an angle, the grating tilt angle, 0 with the fibre axis z, and
2’ = zcos @ — x sin O (Figure 15) ; v is the fringe visibility and taken to
be unity; Ky = /A with A is the pitch of the gratings; An = 2njov
is the ac index modulation; and © is the tilt angle of the gratings. For
simplicity we ignore the constant UV induced background dc index
change and take ac index modulation to be of constant amplitude, i.e.
no apodization. Using this expression for Ae(r, §,z,0) in equation
(3.1.1), the ky2 can then be expressed as summation of two compo-
nents

K12 = g7, exp(2iKgzcos8) + gy, exp(—2iKgz cos8) (3-1.4)

where,

2 a

J J(& - E3)exp(F2iKgrcos psinO)rdrde (3.1.5)
0 0

+ _ nmmiAn
N2 = "5z,




3.1 COUPLING COEFFICIENT

Higher Fourier components of the gratings are of negligible impor-
tance within the bandwidth of interest and hence we neglect those
terms.

10° TFBG

Overlap EH-P

Figure 16: In the presence of the 10 deg tilted grating, P-polarized core mode
(HE 1) couples dominantly to the odd EH;,,, mode whereas the
S-polarized core mode couples to the even HE;,, modes. The
grating assisted overlap in other two cases are oscillatory and
result in negligible integral value according to equation 3.1.5.

Under weakly guiding approximation, the core HE;; can be ex-
pressed as X- or Y- linearly polarized modes. In our core mode equa-
tions these two scenarios correspond to the cases where = 0 and
P = F respectively. We assumed our gratings to be X-tilted by virtue
of choosing cos ¢ dependence in our gratings equations. Hence X-
polarized (Y-polarized) HE; mode is P-polarized (S-polarized) with
respect to the grating (Figure 15). In reality, the core mode is not
exactly linearly polarized, i.e. X-polarized (Y-polarized) core mode al-
ways contains some components in the y direction(x direction). How-
ever, such components are rather very small and we ignore them. The
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magnitude of the coupling coefficient is the result of the interplay not
only between the electric field intensities of the cladding modes in
the core but also on the vectorial distributions of the modes of inter-
est. The vectorial distribution ensures that the S-polarized core mode
couples primarily to the odd HE modes and P-polarized core mode
couples to the even EH modes. As an example, the Figure16 shows
the 10 deg grating assisted coupling interactions between HE;; core
mode and HE343 (nerr = 1.3333), and between HE{; core mode and
EHz44 (Nere = 1.3329 ) for both P and S polarization. These two
cladding modes are two consecutive solutions of the dispersion re-
lation equation 2.2.14. In the presence of the dielectric perturbation
S-polarized HEy; has maximum overlap with the even HEj43 and
minimum overlap with the even EH;44 modes. The overlap with the
even EHz44 mode is oscillatory and hence results in a small value
through the integral relationship of equation 3.1.5. The scenario is
completely reversed for the P-polarized case where the maximum
coupling happens for the EH244 odd mode.

More interestingly, even the weakest tilt distinguishes completely
between the circularly symmetric TEg,,, and TMg,,, cases. In this case
the P-polarized (S-polarized) core mode couples only to the radially
polarized TMon, (TEpm) and no cross couplings are allowed. The cou-
pling to the hybrid modes with any azimuthal or radial order also de-
pends on the polarization nature of the mode, i.e. how “TE” or “TM”
like the mode is.

As examples we include the coupling for the 10° tilt angles in Fig-
ures 17 and 18. In both cases the magnitude of the index perturbation
is taken to be 5 x 1073, As shown in the previous chapter, modes
with (1 # 0) effective guide index close to the core index have weak
preferential polarization, i.e. radial and azimuthal electric field com-
ponents are equally strong. Therefore, the core mode couples strongly
with these modes regardless of the polarization orientation. However,
a 10° tilted grating suppresses coupling to most of these modes. More-
over the strongest coupling occurs for modes of the first ten azimuthal
orders only. This is not surprising and is consistent with the Figure
9 which shows that higher order modes have less power in the core.
Hence, coupling coefficients of modes of a particular azimuthal or-
der are function of grating tilt, power in the core, and the relative
strength of the azimuthal (or radial) component of the electric field of
the mode. This feature is also evident in the coupling coefficient plots.
Modes with no preferential polarization, i.e. with both strong radial
and azimuthal electric field components, couple equally strongly for
both P and S-polarized cases. However modes with index away from
the core have strong preferential polarization resulting in the strong
polarization dependent coupling.
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long grating with 10° tilt.
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3.2 TRANSMISSION RESPONSE

3.2 TRANSMISSION RESPONSE

Once the coupling coefficients are determined, the transmission spec-
tra can be calculated by solving a set of simple coupled equations
which describe how the slowly varying amplitude of the core mode
u(z) couples to any cladding mode with amplitude v, (z) in the pres-
ence of the grating induced dielectric perturbation. By ignoring all
losses and utilizing slowly varying wave approximations and appro-
priate relations, the coupled-mode equations can be expressed into
the following simple form [78]

du

o Z 19 vim exp(j26z) (3-2.1)
im
dV[m - 2
Z[ 55— 19 uexp(—j2bz)] (3.2.2)

im

where u(z) and v(z) denote the forward travelling core mode and
the backward travelling cladding modes respectively, and 26 = 3, +
Bv —2K4 cos O is the grating assisted phase matching parameters, and
B is the propagation constant of a mode. At & = 0, grating period
A = AMeffcore + Nerfrclad) dictate the phase matching wavelengths
for the cladding modes. The boundary conditions for a grating of
length L are: u(z = —-L/2) =1,v(z=1/2) =0.

The set of equations 3.2.1 describes the interaction of a large num-
ber of modes through coupled first order differential equations. In
the previous chapter we showed that for 10° tilted gratings the core
mode interacts strongly with cladding modes with azimuthal order
upto 10. Hence the calculation of the transmission spectrum requires
the solution of the first order differential equations with at least over
1000 modes. Moreover the solutions need to be computed at each
wavelength. Hence the difficulty of solving the coupled-mode equa-
tions depend on the strength and the spectral density of resonances
[65]. However this computational problem is greatly simplified by
recognising that the discrete modal solutions for the cladding modes
results in modes which are nearly degenerate. Thus, for any wave-
length modes with the smallest detuning parameter  are of interest.
Even then, if the material dispersion cannot be ignored, which is the
case for a 10° tilted gratings since the spectral response spans over
100 nm bandwidth, the calculation still remains challenging.

We calculate the transmission spectrum using the following proce-
dure:

1. First we look for the modal solution of using the dispersion
relation. If the material dispersion can be ignored, this can be
done only at the Bragg wavelength for modes of all radial and
azimuthal order. If the material dispersion cannot be ignored, or
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Figure 19: The calculated and the measured spectra of 1 cm long 4° TFBG
with S-polarized core mode. We obtain the calculated spectrum
by ignoring material dispersion and including modes with az-
imuthal order of 1 =0 to 5.
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high accuracy is desired we look for modes at each wavelength
(pm) that satisfy the momentum conservation requirement of
the gratings interaction, i.e., 6 = 0.

2. We calculate the coupling coefficient of each of these modes

3. We estimate the bandwidth of a resonance for each mode based
on the closed-form expression of the coupled-mode equations
involving two modes [65]:

AN on A
0 T4 (—2)2 (3-2.3)

A Nefr onL

where Ap is the design wavelength, i.e. the wavelength where

and A/\a‘ﬂ is the normalized bandwidth.

4. Knowing the bandwidth, we can group the modes for which the
resonances overlap. This allows us to include only the modes
which are of interest.

5. We subsequently solve a set of coupled mode equations involv-
ing all modes of interest in a particular wavelength.

Figure 19 shows the calculated and the experimental spectra of a
4° TFBG for the S-polarized core mode. Figure 20 shows the calcu-
lated spectra of 10° gratings for both S- and P-polarized core modes.
For the case of 4° TFBG, we calculate the spectra using modes of az-
imuthal order less than 6 whereas for the 10° case we include modes
up to azimuthal order of 13, that is including a total of over 1600
modes. We ignore material dispersion for both cases and assume grat-
ings to be of 1 cm in length.

In Figure 21 we present the dispersion compensated partial trans-
mission spectra of a 10° tilted 4mm long grating. The cladding mode
index distribution has a chirp i.e. high index modes of the same az-
imuthal order are more closely spaced together. This along with the
preferential polarization properties of the higher radial order hybrid
modes introduces a complete split in the resonance transmission spec-
tra of the TFBG at shorter wavelengths depending on the core mode
polarization orientation with respect to the plane of the tilt of the
gratings. TFBG with 10° tilt allows strong coupling into these higher
order radial modes. Figure 21 shows the split in a group of cladding
mode resonances. For these classes of resonances P-polarized core
mode couples dominantly to EHy,, and TMy,, modes and S-polarized
core mode couples to HE{;, and TEy,, modes. The coupling to the
HEym ( EHym) for P-polarized (S-polarized) core mode are, at least,
an order of magnitude smaller, and hence can be totally ignored for
all practical purpose. Moreover for both P- and S-polarized cases, odd
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Figure 20: The calculated transmission spectra of a 1 cm long 10° TFBG for
the S- and P-polarized cases. We obtain the calculated spectra
by ignoring material dispersion and including modes with az-
imuthal order 1 = 0 to 13 using over 1600 modes.
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Figure 21: First two panel shows the calculated and the experimental par-
tial transmission spectra of 10° tilted 0.4 cm long TFBG with
ABragg = 1610 nm. 5- and P-polarized resonances are spectrally
well separated. Bottom image shows the dominant modes and
typical coupling coefficient for 1 cm long gratings.



44

COUPLING COEFFICIENT AND TRANSMISSION RESPONSE

azimuthal order and even azimuthal order (including zero) modes are
nearly degenerate and form alternating resonance dips.
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Figure 22: Evolution of a cladding resonance (n.¢¢ = 1.4169), coupling co-
efficient of the constitutive modes, and the maximum index vari-
ation of the constitutive modes (spread of modes) as a function
of surrounding medium index for a 4° TFBG. The slight sharp-
ening of the resonances with high n3 occurs despite decreasing
coupling coefficient due to bunching of modes.

Our result is consistent with the experimental evidences put for-
ward in [45]. In the reference [45] the authors demonstrated the ex-
citation of the surface plasmon in a gold coated cladded fiber with
a TFBG. They experimentally demonstrated that the plasmon could
only be excited when the polarization of the core mode at the gratings
are P-polarized with respect to the plane of the tilt of the gratings and
as a result the transmission spectrum exhibits strong suppressions of
cladding resonances. To excite plasmon on the gold coated surface
one requires radial polarization. Since S-polarized modes couple to
the azimuthally polarized HE and TE cladding modes, these sets of
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modes, despite being spectral neighbours to EH and TM modes re-
spectively, are unable to excite surface plasmon.

We now want to briefly examine the effect of the index change on
the cladding mode resonance. Chan et al. in the ref. [39] reported that
with the change in the external index, the sharpness of cladding mode
resonances increases and then right before the cutoff, the resonance
amplitude decreases. We investigate this effect in a 4° tilted grating
by varying the value of n3, i.e. the index of the outside medium. We
present the results of our calculation in the Figure 22. Each resonance
is made of modes of many different azimuthal orders. A higher az-
imuthal order mode is slightly more sensitive, hence it gets perturbed
more with the change in the index compared to a low azimuthal or-
der mode. However the difference in sensitivity can be appreciated
only either near cutoff, or especially for modes with large azimuthal
order mismatch, e.g. 1 = 1 to L = 7. The variation in the n3 value has
two folded effect: first, the coupling coefficient of some of the con-
stitutive modes decreases with the increasing index. As n3 increases,
fraction of power in that layer increases, this decreases power in the
core for this mode, resulting in the lower overlap value, i.e. the cou-
pling coefficient goes down. Second: due to the difference in sensitiv-
ity among the constitutive modes of a resonance, the overall effective
index spread of these modes goes down, i.e. modes become closely
packed in the effective index space, or become more degenerate. This
subtle change in the modal effective index spread over compensates
the drop in the coupling coefficient and the overall resonances gets
slightly sharper. As the value of n3 increases further and approaches
the cutoff value of the modes, sensitivity between modes of differ-
ent azimuthal order gets more prominent, and as a result, higher az-
imuthal order modes satisfy the cutoff conditions with lower n3 value.
Thus near cutoff the resonance depth decreases since now, both the
number of the constitutive modes and coupling coefficient of each
modes are lower.

Finally in Figure 23 we plot the simulated response of a pair of
P and S resonances with effective index of 1.3042 and 1.3047 respec-
tively with respect to the change in outside index. In this plot the
Y-axis corresponds to the relative position change with respect to the
Bragg wavelength and the X-axis corresponds to the index change
in the outer medium. These two resonances are made of modes of
same azimuthal order, but of different polarization; despite being im-
mediate neighbour in terms of the wavelength location in the TFBG
transmission spectra, the resonances excited by the P-polarized core
modes shows slightly more sensitivity to the external index change
than the resonances excited by the S-polarized core mode. As the
modes approaches cut-off both resonances overlap each other. This
can be understood by the fact as the index difference between the
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Figure 23: The Response of the (10°) S-pol and the P-pol resonances as func-
tions of n3. The resonances contain modes with effective indexes
of ~1.3042 (P-polarized) and ~1.3047 (S-polarized) respectively
and the resonances lie beside each other in the transmission spec-
tra. Resonances excited through P-polarized modes move more
and near cutoff overlaps with S-polarized modes

cladding and the outside medium decreases, the effect of the bound-
ary becomes weak, i.e. modes become weakly guided and degenerate.

3.3 COMMENTS

In the last two chapters we have presented the complete vectorial
mode coupling properties of weakly tilted fiber Bragg gratings. We
started the discussion by solving the dispersion equation of a three
layer fibre structure for the cladding modes. We have presented a
simple sign convention to distinguish between the hybrid nature of
the cladding modes and then investigated the polarization properties
of these cladding modes. The four classes of cladding modes are ra-
dially polarized TMo.w modes, azimuthally polarized TEp,m modes,
and hybrid HE and EH modes. Hybrid modes with high radial order
have preferential polarization in a sense that over 95% of total power
is carried by the radial or the azimuthal components. Hence for all
practical purpose these modes can be regarded as completely radially
or azimuthally polarized.

The tilted grating break the symmetry of the fibre structure and
show a complete preferential coupling properties for the TEo, and
TMom modes based on the orientation of the polarization vector of
the core mode with respect to the plane of the tilt of the gratings.
Coupling to any hybrid modes is also a function of the polarization
orientation of the core mode. The HE and EH modes of a particular
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radial order are the two orthogonally polarized nearly degenerate

solutions of the eigenvalue equation for the same azimuthal order.

However, their separation increases with the radial order; so does the
absolute polarization preference. More interestingly, tilted gratings
even with a relatively weak tilt allows selective coupling to either

the azimuthally polarized HE or to the radially polarized EH modes.

Therefore, each resonance excited by the core mode is either radially
or azimuthally polarized. In the next chapter we use this property to
investigate carbon nanotube thin film growth on the cladding of the
fibre.
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CHARACTERIZATION OF THE SWCNT COATING
ON OPTICAL FIBRE

In this chapter we present the study of the interaction between the
single-wall carbon nanotube deposited on the cladding of standard
telecom fibre and the TFBG. We investigate the evolution of the linear
optical properties and the thickness of the SWCNT thin-film growth
using the spectral response of TFBG. We begin the chapter by pre-
senting the deposition technique and, then, proceed to present the
results of our analysis. Interestingly, our experimental results show
high polarization dependent loss of randomly oriented carbon nan-
otube thin films; and more importantly, the difference in polarization
dependent loss decreases rapidly and after a certain critical thickness
the difference is negligible. However the film shows no birefringence.

4.1 CNT DEPOSITION
We deposit SWCNT on the cladding of fibres using the “dip-coating”
method. We use high purity, greater than 90 mass%, SWCNT’s of
approximately 1.3 nm in diameter and about 1 um in length for this
purpose. Nanotubes are produced using the laser-oven method at the
National Research Council, Canada [79]. The mixture has a ratio of
semiconducting nanotubes to metallic nanotubes of roughly 2 : 1. The
deposition process requires the preparation of the CNT suspension
in DMF (N, N-dimethylformamide) solution. We deposit SWCNT on
the cladding of the fibre with 1cm long 4° tilted gratings with Bragg
wavelength at ~1586 nm. The gratings are fabricated by side exposing
the fibre to a 248nm pulsed KrF (Krypton fluoride) Excimer laser
beam diffracted off a phase mask [30].

The “dip-coating” process involves the following steps (Figure 24):

1. We functionalized ~10mg of SWCNT’s using bath sonication in
70% nitric acid for 2 hours. This acid treatment creates defect
sites in the CNT structure.

2. We recover the nanotubes by filtration.

3. To get rid of excess nitric acid, we rinse the SWCNTs using
nanopure water ( 18.2M () — cm ionic purity) through sonication
for ~2 hours.

4. We then re-disperse the SWCNTs in 10mL DMF solution. The
acid treated nanotubes disperse readily in the DMF solution
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Figure 24: Preparation of the SWCNT-DMF suspension. We deposit CNT on
the fibre surface through repeated sequential dipping in APTES
solution, CNT-DMF suspension, and in nanopure water.
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and produce optically black thick suspension. This process cre-
ates COOH-functionalized negatively charged SWCNTs.

5. To introduce adsorption of the SWCNTs, we need to functional-
ize the surface of the fibre. We accomplish this by dipping the
fibre in 0.1wt% aqueous APTES (3-Aminopropyltriethoxysilane)
solution for ~30 seconds. This process produces amino-terminated,
silanized positively charged surface.

6. We submerge the functionalize fibre in the DMF-CNT suspen-
sion for ~1 minute. The positively charged fibre surface readily
adsorbs negatively charged functionalized SWCNTs.

7. In the final step we submerge the fibre into the nanopure water
to homogenize the distribution and to get rid of any loosely
connected nanotubes and then finally air dry the fibre.

8. We then repeat the entire dipping cycle to increase the thickness
of the nanotube layer.

Broadband Polarization TFBG Spectrum
source controlier analyzer

(a)

S|

Tunable Laser

==

4

Photodetector

TFBG

Electrical signal
optical component

processing
Electrical and

PC

LUNA optical vector analyzer
®)

Figure 25: The polarization dependent response can be measured two ways:
(a) using a broadband source, polarization controller and a spec-
trum analyzer; or (b) using a LUNA’s Optical Vector Analyzer

In general, the polarization dependent response of the TFBG can
be obtained experimentally by launching polarized light in the fibre
and ensuring the proper electric vector orientation at the TFBG. We
let the light from a broadband source pass through a polarization
controller (made of a polarizer, half wave plate and a quarter wave
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Figure 26: The cladding mode response of a pair of 5- and P-resonances

during the 23 dipping cycle of the SWCNT deposition on the
cladding of the optical fibre (Sample 1).
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Figure 27: SEM images, in three different scales, confirms the presence of
the SWCNT layer on the fibre surface
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plate) to obtain polarized light (Figure 25a). Standard telecom fibre is
not a polarization maintaining fibre, and hence the polarization vec-
tor changes its orientation as the light propagates. Due to bend, stress
and other laboratory variables even knowing the exact position of the
TFBG and the initial light vector orientation is not good enough to en-
sure the exact control of the vector. However, one can find the S- and
P- resonances by rotating the vector of the core mode and seeking
the maximum separation between a pair of resonances 25b). During
the dipping cycle we constantly monitor the spectral response of the
TFBG using Luna’s Optical Vector Analyzer. We record the stable re-
sponse of the TFBG after each cycle of deposition. Luna measures
the complete Jones Matrix (2X2 complex matrix, with the phase and
the amplitude, for each wavelength) for the full spectral range of the
TFBG’s response. The repeated deposition of CNT on the surface of
the cladding of the fibre modifies the spectral response of the grat-
ings by changing the wavelength location and the amplitude of each
cladding mode resonance. The shift in the resonance location after
each dipping cycle readily confirms the growth of the nanotube layer
on the surface. Using the Jones matrix data the P- and S-polarized
response of the gratings are then calculated using the following axis
transformation rule (i.e. a linear polarizer):

cos?2 @ cosBsin®
Jout =17~ ) .2 (4.1.1)
sin 0 cos @ sin“ @

where ] is the Jones matrix, 0 is the angle between the arbitrary eigen-
polarization directions emitted by the LUNA and the X-axis of the
fibre as defined by the direction of the grating tilt. This transmission
extracts the X(P-polarized) and Y(S-polarized) transmission spectra.
The angle is found by varying the value of 0 and looking for the
maximum wavelength separation between a pair S and P resonances
within a spectral window. Figure 26 shows the recorded change of
the cladding mode response of one pair of orthogonally polarized
resonances for 23 subsequent dipping cycles for the Sample 1. The
SEM images in Figure 27 obtained for the dip coating process show
the random orientation of the CNT film growth on the fibre cladding

4.2 ANALYSIS

We are interested in the complete characterization of the SWCNT lay-
ers by extracting three parameters: the real and imaginary part of the
index and the evolution of the average thickness of the CNT layers.
Each dipping cycle changes the wavelength position and the ampli-
tude of the cladding modes. In general, the Kramers-Kronig relation-
ship suggests that the real and the imaginary parts of the index of any
material are coupled. However, the dependence is very weak for weak
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absorptions. It has been shown in Chapter 2 that since all cladding
modes are strongly guided and carry very little power in the evanes-
cent tail, the acquired imaginary part of the effective index is low
even for highly absorptive homogeneous outer material. Moreover,
in our case, the CNT layers are expected to be very thin and much
smaller than the wavelength of light; thus each mode effectively inter-
rogates a composite CNT-air structure. Under these circumstances it
is reasonable to expect that the effective imaginary part of the guided
modes is weak. For the purpose of this analysis we ignore the effect
of the imaginary part while trying to extract the real part of the index
and the thickness of the CNT layer. Once we determine these two pa-
rameters we proceed to extract the imaginary part of the index of the
CNT layer.

The real part of the index is related to the absolute wavelength
shift of a resonance. The Bragg mode is guided by the core-cladding
boundary and is not perturbed by the outside index change. More-
over, the cladding mode resonances and the Bragg resonance have
similar sensitivities to the temperature change and to any undue lin-
ear stress. Hence we use the Bragg resonance as internal reference
and measure the relative shift of the cladding mode resonances with
respect to the Bragg resonance to cancel all undue environmental
effects [39]. The Figure 28 also shows the calculated dispersion com-
pensated partial transmission spectrum for the resonances of interest.
This response is calculated using the three layer model presented in
the previous chapters. Here, we present the analysis of two samples.
We prepare sample 1 by 23 dipping cycles and sample 2 by 10 dipping
cycles.

From the three layer model we can find the effective guide in-
dexes of the constitutive modes of these two resonances of interest.
The choice of these two modes is not completely arbitrary. We have
shown in the previous chapter that in the TFBG transmission spec-
trum even order azimuthal modes and odd order azimuthal modes
form alternating resonances. We chose these two pairs since our anal-
ysis shows these two pairs are formed by the even order modes in-
clude 1 = 0 modes, i.e. TEpy for the S-polarized case and TMg,
for the P-polarized case. The unperturbed effective guide indexes
are 1.41699 (TMo,), 1.4709 (TEom ) for the Resy; and 1.40077(TMom ),
1.40094(TEom) for the Res;. Since the analytical expressions are con-
siderably simpler for the transverse modes, our choice simplifies the
subsequent calculations.

We calculate the evolution of these resonances using the three layer
model presented in the previous chapter. By fitting the experimental
data to the three layer structure we find the guide index of the trans-
verse modes. We take material dispersion into account and use the
Sellmeier dispersion relation developed by James Fleming in Ref. [80].
A mole fraction of .044% of GeO;. gives excellent agreement with
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Figure 30: Figure shows the two solution points for the first two dipping
cycles of the Sample 2. Each line corresponds to many solutions
of the index-thickness pairs that have equal perturbative effect on
the P- and S-polarized modes, TEgy, and TMon, respectively. The
intersection of two lines for each step gives the desired solution.

the experimental response of the TFBG. The other fibre parameters

al = 4.1 um, and the cladding radius a; = 62.5um. From this three
layer model from the Res; we can readily find the wavelength loca-
tion and guide index of each mode. For a non-trivial solution to exist,
same mode effective index must also be a solution of the correspond-
ing four layer structure: core, cladding, SWCNT layer, and air. Now
for each polarization, using the eigenvalue equation of the four layer
structure, and the wavelength and mode guide index obtained from
the three layer structure, we seek for a pair of solution containing
the thickness and the index of the CNT layer. This gives us a pair of
hyperbolas containing all combinations of solution for both P- and
S-polarized cases. The intersection of these two parabolas give us the
index and thickness value of the CNT layer for which dispersion equa-
tion for both polarization satisfy at the wavelength of interest. Figure
30 shows the first two solution points. Figure 31 summarizes the re-
sult. At low thickness the index shows anomalous behaviour, however
the index quickly goes down and stabilizes (Sample 1). It is important
here to note that since our gratings are of 1cm in length and the fact
that the TFBG response allows distributed sensing over the length of
the gratings, hence the thickness and the index that we extract are av-
erage estimates over the length of 1cm. Therefore the values obtained
for the small numbers of dipping cycles actually represent an average
index for a very sparse distribution of CNTs. Our extracted index val-
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ues are within the range of the values reported elsewhere in literature.
Sylvain et. al. in the ref. [59] very recently (in 2012) reported a value
of the real part of the index over 1.4 around 1550nm for randomly
oriented CNT deposited on a planar substrate. The index of the CNT
layer necessarily depends on the packing density of tubes and the
impurity concentration. According to our knowledge the only other
reported effort in measuring the index of the SWCNT was done by
Arcos et al. as reported in the ref [58]. However they measured the
real part of the index of highly aligned SWCNT layer grown on the Si
wafer using the chemical vapour deposition technique. They reported
an effective index using the Bruggeman approximation for a low den-
sity CNT forest on the Si substrate and found the index to be close to
1.1. By controlling the density of vertically aligned Multi-wall Carbon
Nanotubes Shi et. al. showed that the real part of the index can be as
small as 1.0 [81].

Once the real part and the thickness are extracted we can easily cal-
culate the imaginary part of the index. A number of techniques exist
for this purpose. We adopt the group index method as generalized by
Qing et al. in ref. [82, 83]. They have shown that the bulk absorption
coefficient of a thin layer and the imaginary part of the complex index
of the guided mode are related through the following relation

Ng,CNT
Imness] = Imnent) TfCNT Fenr (4.2.1)

where 14 is the group index of the mode in the CNT layer and Fent
is the fraction of the total power, i.e. magnitude of the Poynting vec-
tor, in the CNT layer, ne¢s is the modal effective index and n¢nt is
the nanotubes index. The group index is the ratio between the speed
of light and the group velocity. The group velocity of a mode in a
particular layer is the ratio of the modal power to the total stored
energy, electric and magnetic, per unit length of the waveguide layer
[76]. Fibre is not highly dispersive; moreover, each set of modal reso-
nances are quite narrow and hence we can locally ignore the effect of
the dispersion. The group index of the mode in the CNT layer then is

[76]

j ECNT X HENT‘sz
CNT
2 * s
f nCNTECNT X HCNT'Z’dA
CNT

Ng,CNT = Tefr (4.2.2)

Now by knowing the Im[n.¢f] of the guided mode of interest we
can use equations (4.2.2) and (4.2.1) to readily find the Im[n.nt]. In
chapter 2 we have shown that, away from the cutoff conditions, the
loss coefficient of a mode due to lossy outer medium depends primar-
ily on the real part of the modal guide index. Since the constitutive
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modes of each resonance are nearly degenerate, the effective modal
loss coefficient, i.e. the imaginary part of the guide index can be easily
estimated from the transmission depth of the resonances. Although
we have shown that the coupling coefficient changes and also reso-
nance amplitude may change purely due to the change in the index
of the outer medium, for a 4° grating such changes are minor; and as
a first principle approximation we ignore this subtle effect. Hence we
are able to readily calculate the effective imaginary part of the modes
using the analytical solution of the simple two mode coupling equa-
tion. In the presence of loss, the couple mode equation in equation
(3.2.1) can be modified with a simple loss term [84, 85]. The value of
the minimum linear transmission at the grating assisted phase match-
ing wavelength for 1cm long grating can be expressed as:

| vVa? +4k?(cosh §) +sinh § 2 (423)
" Va2 ¥ 4k2 cosh 0.5v/02 + 4Kk2 + acsinh 0.5v/02 + 4K2 423

Since we assume the coupling coefficient k to be constant, from the
grating transmission we can readily calculate the loss coefficient. For
this purpose we use the values obtained from Resonance; (Figure
28). We present the result of this calculation in Figure 32. Finally we
present the thickness vs. the total complex index in Figure 33.

It is not possible to selectively grow one type of nanotube of the
same chirality [10]. Hence, our sample is a mixture of semiconduct-
ing and metallic nanotube of many kinds and with certain amount
of impurities. For any mixture of nanotubes, the effective optical re-
sponse depends on the distribution of the nanotubes’ diameter in
the mixture. The mean diameter of our sample is around 1 nm. Due
to the extreme structural anisotropy of the CNT (length to diame-
ter ratio) it is expected that nanotubes exhibits high anisotropy [54].
High anisotropy in absorption has been reported by a lot of studies
[55, 56, 58, 86]. In 2012 Ren et. al. exploited the high polarization
dependent absorption anisotropy of carbon nanotubes by designing
a high quality polarizer [87]. However, in all of these cases, the car-
bon nanotubes were highly aligned. In our sample the carbon nan-
otubes are randomly oriented and - as one would expect and as is
confirmed by our experimental evidence - the nanotube films show
no anisotropy in the real part of the index. Hence our result of high
polarization dependent absorption anisotropy is very surprising. In
fact, Figure 33 shows that at high enough thickness this anisotropy al-
most disappears. We found no reported case of such behaviour in any
existing literature. Moreover, S. Yamashita, a pioneer in the field of
carbon nanotube optics, has categorically indicated the non-existence
of the absorption anisotropy in a random CNT film in a very recent
review paper [10]. This is expected, since high anisotropy in absorp-
tion would also mean high anisotropy in propagation. However, the
reported thickness of most CNT thin-film optics, random or not, are

T
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Figure 32: Panel (a) and (b) shows the effective imaginary guide index of
two samples under orthogonal Polarization. The CNT layers ex-
hibit strong polarization dependent extinction coefficient with
low dipping cycle
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on the order of 1Tpum. Our results in high thickness limit (> 150nm),
notwithstanding the variation of packing density and chirality, clearly
agree with all reported measurements [59].

It is befitting to mention here that, in 2011 Bao et al. reported an in-
fibre broadband TE-pass polarizer using a few layers of graphene,the
fundamental constitutive structure of nanotube, deposited on the flat
side of a D-Shaped fibre [88]. They concluded that the polarization
effect is the manifestation of the high polarization dependent attenua-
tion and reported an extinction ratio of 27dB. We also note that the iso-
lated semiconducting carbon nanotube exhibits photo-luminescence,
an effect directly related to the absorption response of the CNT, and
shows a strong quenching effect for the bundled case due to the rapid
charge transfer mechanism between semiconducting and the metallic
nanotube [3, 10]. These reported results point to the fact that the opti-
cal property of a very thick nanotube film can be different than a thin
film of nanometre scale
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In this thesis we have presented two key results: first, we have theoret-
ically shown that by precisely controlling the linear vector orientation
of the core mode with respect to the grating tilt, we can excite one of
the two polarization types of cladding modes. P-polarized core mode
couples primarily to the odd EH{m and TMg,, modes whereas S-
polarized core mode couples to the even HE(, and TEom modes. We
have further shown that apart from the few low radial order modes,
the rest of the EH,, modes can be approximated as radially polar-
ized and HE,,,, modes as azimuthally polarized with respect to the
cladding boundary. In the transmission spectra this polarization de-
pendent coupling mechanism manifests as spectrally well separated
resonances.

Second, we have used the polarization dependent model of TFBG
to completely characterize the layer by layer growth of the SWCNT
thin film on the cladding of the fibre. Interestingly, we have found that
the thin film made of randomly oriented SWCNTs, counter intuitively,
exhibit strong polarization dependent loss, although we have not ob-
served any birefringence. We have shown that the thickness grows
linearly. The values of the optical constants we have obtained matches
very well with all the reported studies apart from one significant devi-
ation and that is the strong polarization dependent loss observed for
film thickness less than 50 nm. We have shown that below this thick-
ness radially polarized TMo,, and EHy,, cladding modes experience
loss which is a couple of times higher than the loss experienced by
the azimuthally polarized TEy.,, and HE;,, modes. This is the first
ever experimental demonstration of the absorption anisotropy in the
randomly oriented SWCNT thin film.

It is important to note that the value of the optical constants ob-
tained are average values over the length of the TFBG. One can read-
ily think of another experiment using a multimode D-shaped fibre
or a planar waveguide to further study the polarization dependent
absorption property without the presence of the gratings to test the
upper limit of the anisotropy. For this purpose we may also need to
slow down the growth rate, i.e. thickness in each dipping cycle, of
the CNT film. We have noted that the broadband TE pass polarizer
using a few layers of graphene reported by Bao et al. [88] is an im-
portant work in this respect. We note that the key difference between
the graphene and the SWCNT, which exhibits almost all exceptional
properties of the monolayer graphene, is primarily due to the addi-
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tional quantization arising from the confinement of the electron in the
circumference of the nanotubes [10].

We have mentioned that we are interested in exploiting the excep-
tional optical nonlinear properties of the SWCNT. Members of our
group have previously shown that TFBG can be used for the plas-
monic excitation on the gold surface [89]. It has recently been re-
ported that the integration of the carbon nanotubes with the plas-
monic metamaterials increases the optical nonlinearity by an order
of magnitude due to the resonant plasmon-exciton interactions [go].
Researchers have widely reported enhancement of the nonlinear pro-
cesses in plasmonic composite structure made of metal nanoparticles
due to the novel near field focusing mechanisms of these particles
[91—94]. Therefore, it could be of high interest to study the bahaviour
of the metal- nanotube composite structure for nonlinear optical ap-
plications.
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APPENDIX

This appendix contains some of the Mathematica© codes I have
developed for calculating the results included in this thesis. Codes

begin in the next page.
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{*Dispersion value Calculationw)
SAl = 0.69616630;

S11 =0.068404300;

SA2 = 0.40794260;

$12 = 0.11624140;

SA3 = 0.89747940;

S13 = 0.98961610 « 10;

GAl =0.80686642;

Gll = 0.068972606;

GA2 = 0.71815848;

Gl2 = 0.15396605;

GA3 = 0.85416831;

G13 = 0.11841931 %100;

X = 0.044; (»mole Fraction of Gew)

H

I

SA1 A2 SA2 A? SA3 2
nclad[A_] := 1+ + + :
2? - 8112 A? -812% A% -gl3?
(*gives clad index at A in umw)
(SA1l + X (GAl - SAl)) a2 {SA2 + X (GA2 - SA2)) A?
ncoref{A_] := 1+ + +
A% - (811 + X (Gl1-811))? A? - (812 + X (G1l2-812))?

(SA3 + X (GA3 - SA3})) A2

);(*gives core index at A in um«)
A2 - (813 + X (G13 -813))°
(*Returns Core mode index at Ax)
coreModelIndex[A ] :=
Block[{coreindaxFunction, 1, 20, al, a2, nl, n2, ub, v, b, pHE, seeds},
al = 4.1; a2 =62.5; (xuse SMF 28 values)
20 =377.0;
1=1.0; (*xazimuthal mode indexx)
nl = ncorel[A]: n2 = nclad{Aa]:
(#Calculate core mode effective indexw)
u0[neffcore_Real] := 4/ ({(2x) /A)? (n1? -neffcore?)) ;
v = ((27) /) al+f (n1? -n2?);
b[neffcore_Real] := (neffcore? - n2?} / (n1? -n2?);
BesselJd[l, v/ (1-b[x])]

coreindexFunction[x ] := Evaluate {v \/ (1-b[x])
BesselJ[0, v/ {1-b[x])]

BesselK[1l, v+/b[x]]

- b ;
v (¥olx]) BesselK[O0, v»\/b[x]]]

pHE = Plot[Re[coreindexFunction|[x]], {x, n2, nl}

. Mesh -+ {{0}), MeshFunctions —» (coreindexFunction[#t] &)]1:
seeds = Cases[Normal[pHE], Point[z ] = z{1], o] :
Return[Flatten[Table [x /. FindRoot [coreindexFunction{x],

{x, 8}], {s, seeds}] | (SameTest » (Re[#1-u2] <107° &))]”,
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{(*Solving the Cladding mode dispersion relations)

(»findModeSolutionEH[nefflow, neffhigh, wavelength, lorder, nout]
returns all EH (and TM) modes for which nefflow < ng s s neffhighs)

(»findModeSolutionHE [nefflow, neffhigh, wavelength, lorder, nout]
returns all HE (and TE) modes for which nefflow 5 ngs s neffhighw)

pluz (gK+2H82222) \ oy gy +gr1-2

al a2 n2?
go = 1u32 ¢
Juld2 uzl K riu2l glu
o2 (p1 (-u2 - )
(p ( ) ( az n2? alni? ) alni? a2 n1?

ol {pl u2 Ju3z _ (n3%u21) x _rlu2l glu32
a2 aln2? al a2
L0prime = ,
320K 21 u32 ol o2 n3* g1l K n2? 81
pluz(n > u2lu o}o)_ T sgr1-222l
n2 alaZnl ni 1 u2

£f= 50- EO0prime;
g0l =K /. Simplify[Solve[f =0, K]]}:

2mwy2
1= —_ 1% - x?) ;
u (A) (n12 - x?)
2 7y2
2= — 2% - x?) ;
S [EE
2ry2
3 = R 2 _ 32 :
w (A) (x n3?)
1 1
u21=( ——);
u2?  ul?
u3d2 =

(&%)
+ ;
u2?  w3?

DBesselJ [l _, arg ]
DBesselK[l , arg ]
DBesselY{l , arg ]

i

1/2 {(BesselJ[-1+1l, arg)] - BesselJ[1+1, argl):;
1/2 (-BesselK[-1+1, arg] - BesselK[1l+1, arg]):
1/2 (BesselY[-1+1, arg] - BesselY[1 +1, arg]);

L]

DBesselJ{l, al ul}

B ul BeaselJ{[1l, ul al] !
pl = BesselY[1l, u2 al] BesselJd[1l, u2 a2] - BesselJ[1l, u2 al] BesselY[l, u2 a2j;
ql = BeaselJ[1l, u2 a2] DBesselY{[1l, al u2] - BesselY[l, u2 a2] DBesselJ[1l, al u2}:

rl = BesselY[1l, u2 al] DBesselJ[1l, a2 u2] - BesselJd([l, u2 al] DBesselY|[1l, a2 u2};
8l = DBesselY[1l, al u2] DBesselJ{1l, a2 u2] - DBesselJ([1, al u2] DBesselY[l, a2 u2l};
11x
ol = ;
z0

o2 =11x720;
DBesselK([l, a2 w3]
fEH = s80l1[[1] - :
w3 BesselK[1l, w3 a2]
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DBesselK{[l, a2 w3]

-

fHE = solff2] - ;
w3 BesselK[l, w3 a2]

{*convert the solutions into functionw)
modeEH[neff ] := fEH /. x -» neff;
modeHE[neff ] := fHE /. x » neff;

{(*Declare compiled funcitonw)

HEmodes = Compile[{{x, _Reall}}, Evaluate[modeHE[x] ],
(*{{x, Real}},+) RuntimeAttributes -» {Listable}, Parallelization -» True,
CompilationTarget -+ *C", "RuntimeOptions® - “Speed®,
CompilationOptions » {"ExpressionOptimization® » True},
RuntimeOptions » {*EvaluateSymbolically" - False}];

(*HEmodes[x_] := Evaluate[modeHE([x]];
EHmodes[x ] := Evaluate[modeEH[x]]:x*)

EHmodes = Compille[{{x, _Real}}, Evaluate[modeEH[x]],
{(#{{x, _Real}},») RuntimeAttributes -+ {Listable}, Parallelization - True,
CompilationTarget -» "C*", "RuntimeOptions" - "Speed",
CompilationOptions -» {*ExpressionOptimization® » True},
RuntimeOptions »+ {"EvaluateSymbolically" - False}]:

modePlotsHE[nefflow , neffhigh ] :=

Block[{},
(*Declare the functions that plots
the mode within a specific range of effective indexx)
PHE = Plot[Re[Evaluate[HEmodes[x]]], {(x, nefflow, neffhigh},
Mesh -+ {{0}}, MeshFunctions » (HEmodes{#] &)]; 1;
modePlotsEH[nefflow , neffhigh ] :=
Block[{},
{*Declare the functions that plots
the mode within a specific range of effective indexw)
pPEH = Plot[Re[Evaluate[EHmodes[x]]], {x. nefflow, neffhigh},

Mesh » {{0}}, MeshFunctions -» (EHmodes[#] &)]; ];

(=Declare the functions that finds
the effective indices within a range rangex)
rootas =.;
SetSharedVariable[rootsHE];
SetSharedvVariable[rootsEH];
findModeSolutionHE[nefflow , neffhigh , wavelength , lorder_,
Block[{nl, n2, A, rootsHE, 1, n3},
n3 = nout;
1 = loxder;
A = wavelength;
nl = ncore[A}];
n2 = ncladiA]:
rootsHE = (};
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MapThread [modePlotsHE, {{nefflow}, {(neffhigh}}}:
seeds = Cases[Normal|[pHE], Point[z_] :» 2[1], =] :
rootsHE = Reap[Sow[Table[
x /. FindRoot {Re[HEmodes[x]], {x, 8}, AccuracyGoal » 8], {s, seeds}]]];
rootsHE = Select[SOrt[Flatten[rootsHE]} U (SameTest » (Re[#l-#2] <1077 &}),
Re[#] s n2 &];

Return[rootsHE] ;

]

findModeSolutionEH[nefflow_, neffhigh , wavelength , lorder_, nout_] :=
Block[{nl, n2, A, rootsEH, 1, n3},
n3 = nout;
1= lorder;
A = wavelength;
nl = ncorel[A];
n2 = nclad[A}:
rootsEH = {};
MapThread[modePlotsEH, {{nefflow}, {neffhigh}}l;
seeds = Cases[Normal [pEH], Point[z ] = z[[1], <] ;
rootsEH = Reap[Sow[Table{
x /. FindRoot [Re[EHmodes[x]], {x, s}, AccuracyGoal - 8], {s, seeds}]]]:
rootsEH = Select[Sort([Flatten[rootsEH]]|J (SameTest » (Re[#1-8#2] <1077 &)),
Re[u] s n2 &];
Return{roctsEH] ;

]

{(*CouplingHybrid[lnumber, wavelength, neff, indexocut, PorS]
returns coupling coefficient of a hybrid modex)

{(#*1 = lnumber, A=z wavelength in um, neff = nNges, ci1aa, indexout = n;,

PorS = “p" or “"s" of the core mode polarizations)

CouplingHybrid{lnumber , wavelength , neff , indexout , PorsS ] :=

Module[{Kg, e, al, a2, A, £0, ol, o2,

ul, u2, u2l, w3, 1 = lnumber,
A = wavelength, n3 = indexout, nl,
n2, u32, J, K, pl, g, rl, sl, uo,
wl, EcllvP, Ecllvs, U, W, n, B2,
Ercore, Hrcore, E¢core, Hé¢core,
Erclad, Hrclad, E¢clad, H¢clad }.,
nl = ncore[A]; n2 = nclad{i]; neffcore = coreModeIndex[A]:
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b4
Kg = —;

A
@ = 10 Degree;

al = 4.1; a2 =62.5; 20 = 377;

1.604
5|
2 coreModeIndex[1.604]

A= ][[1]]; (#set the Bragg at 1.586w)

u2l[x] ud32{x] ol[x] o2[x]}
LO[x_] := (pl [x, a2] u2(x] (J[x] K{x] + )
al a2 n2?

8l[x, a2]
+glix, a2] (-K[x}) +J[x] ri[x, a2] —--——-——-—-—-—--)/
u2[x]

J[x] u3e[x] u2l{x] K[x]

(aZ[x] (pl[x, a2] (-u2x]) ( - )
a2 n2? alni?
rlf{x, a2] u2l[x] glfx, a2} u32[x] ))
+

+ H

alnl? a2ni?
ol(x ] := (A1x)/70;
o2x_] :=11x2Z0;
ulfx_] :=+/(((2m) 72)?% (n1?-x%));
u2(x_] :=+/ (((27) 72)? (n2% -x?));
-\/(((271') /,1.)2 (x* -n3%));

wi[x ] :=
uldzix ] := [ H
u2[x]2 w3 [x]?
1
u2lix_] = -

u2 [x]? ul[x]? ’

J{x ] := DBesselJd{1l, alulx]] / (ulix] BesselJd[1l, ulx] all);
K[x_] :=DBesselK[1l, a2w3[x]] / (w3[x] BeaselK[1l, w3[x] a2]);
DBesselJ([l , arg ] =1/2 (Besseld[-1+1, arg] - BesselJ[1l+1, arg]):
DBesselK[l , arg ] =1/2 (~-BesselK[-1+1, arg] - BesselK[1+1, arg]l):
DBesselY[l , arg ] =1/2 (BesselY[-1+1, arg] ~BesselY[1+1, argl}:
plix_, r_] :=Bessel¥Y[l, u2[x] al] BesselJ[1l, u2[x] r} -

BesselJ[l, u2{x] al] BesselY[1l, u2{x] r]:
qlx_, r_] :=BesselJ[l, u2{x] r] DBesselY[l, alu2([x]] -

BesselY[l, u2{x] r] DBesselJd[l, alu2{x]];
rl{x , r ] := BesselY[l, u2{x] al] DBesselJ[l, ru2{x]}] -

BesselJd[1l, u2[x] al] DBesselY[l, ru2([x]];
sl[x_, r_] :=DBesselY[l, alu2{x]] DBeaselJ[1l, ru2{x}] ~

DBesselJd[1l, al u2[x]] DBesselY[l, ru2x]]:

u2l{x] o2{x] £o0{x]
F2(x ] :=J[x] - :
niZ al
u2li{x] olfx]}
G2[x ] := LO[x] J[x] +———~I—-—;
a
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n3? ( n2? 20 [x]
G3[x_] :=-— {62[x] pl[x, a2] - ———— gql{x, a2]|;
n2? nl? u2[x]

1
F3[x_] := -F2[x] pl[x, a2]+ qllx, a2il;
u2[x]

(Cos[1@])*;
(sin [14]%);

1 BesselJ[l, rul[x]] ul[x] £0[x] o2{x] DBesselJ[l, rul[x]]

Exrclcorel[x_1 :=
T 1ni1?

L0[x] o2{x] BesselJ[1l, rulx]]

E¢cl o[x ] := (— ~ul[x] DBesselJ[1l, rul[x] ]) ;

ni?r
Hrcleore[x ] :=
(i 1Z80[x] BeaselJd[l, rul[x]] i ul{x] ol[x] DBesselJd {1, rulfx]] )

r 1

-
’

I ol[x] Besseld[1l, rul[x]]
Hopcl oralx_] 2= —( -
r

ul[x] I 50[x] DBesselJd[1l, rul[x] ]) H

Sin[4 1 n]

i ] Conjugate [Hocl o0 [x] ]

pltemsP[x ] = Evaluate [ [E:r:c:lmm [x] (7r +

S8in{4 1 7]
- Conjugate[Hrcl.ore [x]] Bdcl .o [%] (Il' - ——-—-————-——-)) r] H
41

Sin[4 1 =x)
41
S8in[4 1 7]
—a )]
41

pltermsS[x ] = Evaluate [ (E‘.:r:c:lcore [x] (:rr - ) Conjugate [Hécl,, ., [x]]

»
b

- Conjugate[Hrclcore[x] 1 Edcl ., [X] (7r+

1

P1P[x ] := Re[NIntegrate[pltermsP{x], {r. 0, al},
2

Method - {*GlobalAdaptive®,
Method » "GaussKronrodRule®, "SingularityDepth” » Infinity}]]:;

1
P1S[x_] := — Re[NIntegrate[pltermsS[x], {r, 0, al},
2
Method » {*"GlobalAdaptive",

Method » "GaussKronrodRule", "SingularityDepth" - Infinity}]];

Ercleiag[x_] :=
alF2[x] 1 mul[x]?pl[x, r} allmwull[x]®qlix, r]
+
2r 2ruz2fx]

BesselJ([l, alul[x]] [‘

z

alG2[x] wrul[x]2u2{x] o2[x] rl{x, r} al rul{x]?go[x] o2[x] slx, r] ]
- + .
21n2? 2 1ni1?
E¢cl . q4(x ] := BesselJd[1l, alul[x]]
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al G2[x] nul[x]%o2[x] pl[x, r} almul[x]280[x] o2[x] ql[x., r]

2n2?r 2nl1? ru2[x]
1 1
+— alF2[x] nul[x]?u2([x] ri{x, r] -— alwul[x]?sl[x, r]]:
2 2

Hrcl jqalx ] :=

2 G2[{x} 1pl[x, r] i1n2?£0[x] gql[x, r]
+

al mul[x]®BesselJ[l, alul[x]}] |-
2r 2nl1? ru2([x]

AF2{x] u2{x] ol{x] xrl[x, r] 4 o0l[x]sl[x, r] ]
+

-

21 21
F2[x] Tol[x] plix, r]

1
Hopcl qqlx 1 == ——2- al mul[x]2Besseld[l, alul([x]] [—
r

-
1

+IG2[x]) u2[x] riix, r] -
ru2x] nl?

Iol{x] ql{x, r] n2? 1 20[x] sl[x, r} ]
Sin[4 1 n]
41
Sin[4 1 7]
)]

Sin[4 1 ]

41

Sin[4 1 7]

=)
41

p2termsP[x_] := Evaluate[ (Erclchd [x] (yr+ ) Conjugate [Hocl (%] ]

.
12

- Conjugate{Hrcl i,a{x]] Bdcl 4 [x] (n’-

p2termsS[x_] := Evaluate[ (Erclchd [x] (7r ) Conjugate[H¢cl , ,[x]]

-
H

-~ Conjugate[Hrcl i.q[x] ] Bocl,,q[x] (7r+

1

P2P[x ] := Re[NIntegrate[p2termsP([x], {r, al, a2},

Method » {“GlobalAdaptive",
Method - "GaussKronrodRule*, "SingularityDepth” -» Infinity}}l]:

1
P28[x ] := — Re[NIntegrate[p2termsS{x], {r, al, a2},
2

Method -+ {"GlobalAdaptive",
Method - "GaussKronrodRule®, *"SingularityDepth”® -» Infinity}]];

Ercleouefx_] =
F3[x] 1 BesselK{l, rw3[x]]

(al nmul{x]?u2[x]°Besseld[1, alul[x]] (—
2rw3fx]?

- G3[x] o2(x] DBessel(1l, rw3ix]] )]/ BesselK{l, a2w3[x]]:
2 1 n32 w3 [x] ’ ’

E¢el _  [x_] ==
G3([x] c02[x] BesselK[1l, r w3 [x]]

{al mul{x]?u2{x]?Besseld[1l, alul[x]] (
2n3? rw3[x]?

F3[x] DBesselK[l, rw3[x]]
+
2 w3 [x]

))/ BesgselK[1l, a2 w3([x]]:
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Hrcloge [x_] =
% G3[x] 1 BesselK[1l, rw3[x]]

(al rul[x]?u2([x]?Besseld[1l, alullx]] (-
2 rw3[x]?

i F3 1 DB 1K[1, 3
L {x] ¢l[x] DBesselK[l, rw [x]]]]/Besselx[l, azw3[x]1:

21 w3[x]
Hocl ,  [x_] :=
F3[x] I ol1[x] BesselK[1l, r w3 [x]]

- (al nulf{x]?*u2[x]?Besseld[1, alul{x]] (-

2 rwl[x]?
I G3[x] DBesselK[l, rw3[x]] ])
+ / BesselK([1l, a2 w3[x]]:;
2w3([x]
Sin[4 1 7]
p3termsP[x ] := Evaluate[ (Erclcut [x] (n + T) Conjugate [Hécl ,, [x] ]
Sin[4 1 x}
- Conjugate[Hrcl . [x]] E¢cl [x] (7\' - -----;—l—--——- )) r] ;
Sin[4 1 ]
pltermaS[x ] := Evaluate[ (Erclouc [x] (x - -—-—-;-—1---—-) Conijugate[Hdcl, [x]]
Sin[4 1 n}
- Conjugate[Hrcloue [x] ] Edcl . [x] (:n' + -———-4—;—— )) r] :

1

P3P[x ] := Re[NIntegrate[p3termsP([x}, {r, a2, =},
2

Method -+ {"GlobalAdaptive",
Method » "GaussKronrodRule”, "SingularityDepth® -» Infinity}]];

1
P38{x_] := — Re[NIntegrate[p3termsS[x], {r, a2, «},
2

Method -+ {"GlobalAdaptive”,
Method » "GaussKronrodRule”, “SingularityDepth® - Infinity}]]:

u0

2 2
(Tn) (nlz—neffcorez) :

1
P1P[x] + P2P[x] + P3P [x]

EcllvP[x_ ] :=

~

1

EcllvS[x ] :=

~

P1S[x] + P25{x] + P38[x]

{*core mode normalization calculation in HEll modex)
{wcore mode field description x polarizedws)

22
w0 = (——-] (neffcore2 -n2?) ;
A

U= ulal;



Mathematica Code | 84

=
"

w0 al;
n =nl;
U? BesselJ[1, U]
B2 = §- (*Alw);
W2 BesselK([1l, W]

Ercore = u0 BessgelJ[0, ulr] ;

E¢core = - ul BesselJd{[0, ul0rj ;
nl

Hrcore = — ul BesselJd[0, ulr];
z0

nl
H¢core = — ul BesselJ[0, ulr];
Zz0

Erclad = B2 w0 (-BesselK[0, wOr]) :
E¢clad = - B2w0 (- BesselK[0, w0 rx]) ;

n2
Hrclad = — B2 w0 {- BesselK[0, wOTr]);
z0

n2
H¢clad — B2 w0 (- BesselK[0, wir}):;
Z0

integrationTermP([x_] := ( Ercore Cos[¢] Excl.c:e[x] Cos[1l ¢]
+ E¢core Sin[¢] E¢cl_ . . [x] Sin[1l ¢] ) r Exp[+2IKgr Cor[¢] Sin[e]];

gclminugP([x ] := nl E0lcoExact EcllvP[x]

4 A20
NIntegrate[integrationTermP[x}, {r, 0, al}, {¢, 0, 2w},
Method + {"GlcbalAdaptive®,
Method -» "GaussKronrodRule"”, "SingularityDepth® -» Infinity}]:;

b b3
integrationTermS[x_] := ( Ercore Cos [dz + - ] Erclcore [X] Cos {1 ¢+ — ]
2 2

+ Epcore Sin[qni;] Edcl . [X] Sin[l¢+z] ) r Exp[+2 I Kg r Cos[¢] Sin[0]];
2

T
gclminusS[x ] := nl EcllvS[x ] E0lcoExact NIntegrate]|
0

integrationTermS{x], {x, 0, al}, {¢é. O, 27}, Method - {*GlobalAdaptive",
Method —» "GaussKronrodRule'", "SingularityDepth® —» Infinity}]:

Pcoremode =
1
— Re [NIntegrate{ (Ercore Hepcore Cos [¢] 2 . Hrcore Egcore Sinf[¢] 2) r, {¢, 0, 2x},
2

{r, 0, al}, Method -» {"GlobalAdaptive®, Method -» "GaussKronrodRule*,
*SingularityDepth" -» Infinity}]] +

1
— Re [NIntegrate[ (Erclad H¢clad Cos[¢]® - Hrclad E¢clad Sin[é]?) r,
2
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{¢#, 0, 2x}, {r, al, a2}, Method » {*"GlobalAdaptive",
Method » "GaussKronrodRule", *SingularityDepth* —» Infinity}]] :

1
EO0lcoExact = .\,—————-—— ; (*note E0lcoExacts» ul0 = EOlcox)
Pcoremode

If[PorS = ToString[p], Return{gclminusP[neff]], Return[gclminusS[neff]]] ;] 3
SetAttributes[CouplingHybrid, Listable]:

{xcouplingCoeffcientTE[AC, lorder, neff, indexocut]

returns coupling coefficient of a TE modew)

(*1 = 0, AC= wavelength in um, neff = nese, c1aar indexout = ny,
only works assuming core mode is S polarizeds)

couplingCoeffcientTE[AC , lorder_ , neff , indexout_ ] := Block[{l = lorder, A= AC,

= indexout, nl, n2, neffcore,
ul, uz2, w3, u32, w21, J, K,
pl, ql, rl, sl, P1, P2, P3, P,
EOvte, u0, w0, U, W, n, B2, Pcoremode },

ullx ] := ( (27 7 A)2 (nlz—xz)):
V(¢

u2fx ] := (27) 72)% (n2? -x%));
w3[x ] := +/{((27) 72)? (x? -n3?));
1
udz2x J s + ;
(uZ[x]z w3 [x]2
1
u2lfx_ ] : - :

u2x]? wui[x]?
J[x ] := DBesselJd[l, alul([x]] / (ul[x] BesselJd[1l, ul[x) al}l):
K[x_] :=DBesselK[l, a2w3[x]] / (w3[x] BesselK[1l, w3[x] a2]);
DBesselJ[l , arg_] =1/2 (Besseld[-1+1, arg] ~Beaseld[1+1, arg]l):;
DBesselK[l , arg_] =1/ 2 (-BesselK|[-1+1, arg] ~BesselK[1+1, arg]);
DBesgselY[l , arg ] =1/2 (BesselY[-1+1, arg] ~BesselY[1+1, arg]l):
plix_, r ] :=
BesselY[0, u2(x] al] BesselJd [0, u2{x] r] - BesselJ[0, u2[x] al] BesselY [0, u2[x] r};

gli{x_, r_] := BesselJ[0, u2[x] r] DBesselY[0, al u2[x]] -

BeaselY[0, u2{x] r] DBesselJd [0, al u2{x]]:
rlfx , r ] := BesselY[O0, u2{x] al] DBesselJ[0, ru2[x]] -

BesselJ[0, u2[x] al] DBesselY[0, ru2{x]]:;
8l[x , r ] := DBesselY[0, al u2{x]] DBesselJd[0, ru2(x]] -

DBesselJ [0, alu2[x]] DBesselY [0, ru2(x]]:
al=4.1; a2 = 62.5; (v«use SMF 28 valuesx)
nl = ncorel[AC]; n2 = nclad{AC];
20 = 377.0;
6 = 10 Degree;

i
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neffcore = coreModelIndex{[AC]:
1.604

A =N{ ]{[1]]; (*period in nmw)

2 coreModeIndex[1l.604]
b

Kg = —;
A

0;
- ul[x] DBesselJ[0, ul[x] r}:

Ertecore{x ] :

"

i

E¢tecore(x_]

Hrtecore[x_ ]

.
#

ul[x] }3 ({ DBesselJ[0, ul[x] r]);
Z

0;

Erteclad[x ]
E¢tecladx ] :=

1
; alrul{x]?BesselJd[0, alul[x]] {(J[x] u2[x] rl[x, r) -slix, r}]) ;

1
Hrteclad[x ] := -—— al xnul(x]?Besseld[0, alul[x]]
220

(T[x] u2[x] rlx, r]} -s8lix, r}):
Erteouter[x_}] := 0;
E¢teouter|x J := - (al nul[x]?u2{x] Beaseld [0, alul{x]] (J[x] u2{x] pl[x, a2}
-ql{x, a2]) DBesselK[0, rw3([x]]) / (2w3[x] BesselK[0, a2w3[x]]);
Hrteouterx ] := (al xmul{x]?u2[x] BesselJ[0, alul[x]] (J[x] u2x] pl[x, a2]
-gl{x, a2)]) DBesselK{0, rw3[x] }) / (2w3[x] 20 BesselK[0, a2 w3[x]]):
Pl{x ] :=

1
— Re[NIntegrate[Integrate[-Conjugate{Hrtecore[x]] E¢tecorex] r, {¢, 0, 2m}],
2

{r, 0, al}, Method » {"GlobalAdaptive®,
Method -» "GaussKronrodRule*, *SingularityDepth® -5 Infinity}]]:

1
P2[{x_] := — Re[NIntegrate[Integrate[-Conjugate[Hrteclad([x]] E¢tecladx] r,
2

{¢, 0, 2xn}], {r, al, a2}, Method » {"GlobalAdaptive”,
Method - "GaussKronrodRule®, *SingularityDepth® - Infinity}]]:

1
PI3I[x ] := —
Re[NIntegrate[Integrate[-Conjugate[Hrteocuter[x]] E¢pteocouter[x] r, (¢, 0, 2m}],
{r, a2, o}, Method -» {"GlobalaAdaptive®, Method » "GaussKronrodRule",
“SingularityDepth* -» Infinity}]]:;
P{x ] := P1[x] +P2[x] +P3[x];

1
EOvte([x_ ] := ;

VP1[x+I0.]+ P2[x +10.0] + P3[x+ I0.0]
w0 = 4/ {((27m) /2)? (n1? - neffcore?)) ;

2y 2

w0 = (-——-—) (neffcore® - n2?) ;
A

U= u0al;

%
"

w0 al;
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n =nl;

U2 Besseld[1l, U]
B2 = |-

{(*Alx);
W? BesselK[1, W]

Ercore = ul {*Alx) BesgselJ[0, ulr] ;
E¢core = - u0(xAlx) Besseld[0, ulr] ;

nl
Hrcore = — u0 (#Alx) Besseld[0, ulOr};
Z0

nl
H¢core = — ud (xAlx) Besseld[0, ulrj;
Z0

Erclad = B2 w0 (-BesselK[0, wOT]) ;
E¢clad = - B2w0 (- BesselK[0, wOTr]) ;

nl
Hrclad = — B2 w0 (- BesselK[0, wOr]):
z0

nl
H¢clad = — B2 w0 {- BesselK[0, wO<r]);
z0

Pcoremode =
1
— Re[NIntegrate[ (Ercore Hécore Cos[4]° - Hrcore E¢core Sin[é]?) r, {4, 0, 2},
2

{r, 0, al}, Method » {*GlobalAdaptive", Method » *GaussKronrodRule®,
*SingularityDepth® » Infinity}]} +

1
— Re {NIntegrate[ (Erclad Ho¢clad Cos[¢]? - Hrclad Edclad Sin[¢] 2) r,
2

{¢, 0, 2n}, {r, al, a2}, Method -» {"GlobalAdaptive",
Method - "GaussKronrodRule”, "SingularityDepth" —» Infini ty}] ] H

1
E0lcoExact = ." ——————— s
Pcoremode

bid
integrationTermTEs[x_] := ( Ercore Cos [¢ + - ] Ertecore{x]
2

+ E¢core Sin[oh- g] E¢tecore[x] ) r Exp[+2IKgr Cos[¢] Sinfe]]:

gelminuaTEs({x_] :=

nl E0lcoExact E0vte[x ] NIntegrate[integrationTermTEs [x],
4 2720

{¢, 0, 2x}, {r, 0, al}, Method » {"GlcbalAdaptive",
Method - "GaussKronrocdRule®, *"SingularityDepth®” -» Infinity}]:;

Return[gclminusTEs [neff]]; ]

(#couplingCoeffcientTM[AC, lorder, neff, indexout]
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returns coupling coefficient of a TM modex)
(#1 = 0, AC= wavelength in um, neff = ng¢, c1aa,. indexout = n,,
only works assuming core mode is P polarizeds)

couplingCoeffcientTM[AC , lorder , neff , indexocut ] := Block[{l = lorder, A = AC,

n3 = indexout, nl, n2, neffcore, ul, u2,
w3, u32, u21, J, K, pl, g1, rl, sl,
Pl, P2, P3, P, EOvte, ul, w0, U, W,

n, B2, Pcoremode },

ullx ] := &/ (((2m) /2)? (1% -x}));
uz2{x_] := +/ (((27) 7 2)? (n2% -%x%)):
wi[x_ ] := +/{(((27) /2)? (x* -n3?));
J[x_] := DBesselJ[0, alul[x]] / (ul[x] BesselJ[0, ul[x] all);
K[x_ ] :=DBesselK[0, a2w3[x]] / (w3 [x] BesselK[0, w3[x] a2]);
DBesselJd[l_, arg ] =1/ 2 (BesselJ[-1+1, arg] - BesselJ([1+1, argl):
DBesselK[l , arg ] =172 (-BesselK[-1+1, arg]} - BesselK([1 +1, arg]):
DBesselY[l , arg ] =1/2 (BesselY[-1+1, arg] - BesselY([1l+1, arg]l);
plix_, r_] 3=
BesselY[0, u2[x] al] BesselJ[0, u2{x] r] - BesselJd[0, u2[x] al] BesselY[0, u2[x] r];

gqli{x , r ] := BesselJ[0, u2(x] r] DBessel¥Y {0, al u2([x]}] -

BesselY[0, u2{x] r] DBesselJ[0, alu2[x]]:
rl{x , r_] := BesselY{0, u2(x] al] DBesselJd [0, ru2{x]] -

BesselJd [0, u2{x] al] DBessel¥Y [0, ru2[x]}]:;
8l[{x , r_] :=DBesselY[0, alu2[x]] DBesselJd [0, ru2[x]] -

DBesselJ{0, al u2[x]] DBesselY[0, ru2(x]]:
xul[x] 20 DBesselJ[0, rul([x]]

i

Ertmcore[x ] := -
nl?
X 20,1 (x] DBesselJ[0, ul[x] r]:#)

ni?

(#-multiplier[x]
E¢tmcore[x ] := 0;
He¢tmcore{x ] := ~ ul[x] DBesselJ (0, ul([x] r];
1

Ertmclad[x_ ] =z ————
2n1? n2?

al x xul[x]? 20 BesselJ[0, alul[x]] (J[x] n1? u2[x] rl[x, r] -n2’?sl[x, rl);
E¢tmclad{x_] := 0;
H¢tmecladx ] :=

- al wul[x]” BesselJ[0, alul[x]] (J[x] n1?u2[x] r1[x, r]-n2?s8l[x, r]);
2nl

Ertmouter([x_] := {al xwul[x]? 20 BesselJ[0, alul[x]] (J[x] ni2u2[x] rl[x, a2}
-n2? 81([x, a2]) DBesselK[0, rw3[x]])/
(2 ®[x] n1? n3% w3 [x] BesselK[0, a2 w3 [x]]);
E¢tmouterx ] := 0;
H¢tmouterix ] := (al wul[x]? BesselJd [0, alullx]] (J[x] ni? u2x] ri[x, a2]
-n2? 81[x, a2)) DBesselK[0, rw3[x]])/
(2 R[x] n1® w3 [x] BeaselK[0, a2w3[x]]);
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Pifx ] := Re[NIntegrate[Integrate[ Ertmcore[x] Conjugate[H¢tmcore[x]] r,

{¢, 0, 2x}}, {r, 0, al}, Method -+ "GaussKronrodRule*® ]};

P2f{x ] := Re[NIntegrate[Integrate[Ertmclad[x] Conjugate[Hdptmclad[x]] r,

{$, 0, 2xn}], {r, al, a2}, Method -+ *GaussKronrodRule" ]];

P3{x_] := Re[NIntegrate[Integrate[Ertmouter[x] Conjugate[H¢tmouter[x]] r,

1
2
1
2
0
1
2

{$p, 0, 2x}], {r, a2, =}, Method - "GaussKronrcdRule® }]];
Pi{x_] := P1[x] +P2[x] + P3[x]:

1
EOvtm[x ] := H
VPl[x+I0.]+ P2[x +I10.0] + P3[x+ I10.0]

al=4.15; a2 = 62.5; (»use SMF 28 valuewx)
nl = ncorel[AC]; n2 = nclad[AC];
Z0 =377.0;
6 = 10 Degree;
neffcore = coreModeIndex[AC]:;
[ 1.604

A =N }[[1]]; {(#period in nm»)
2 coreModeIndex{1.604]
n
Kg = —;
A
27my2
uod = (—-—) (nlz—neffcorez) ;
A

(xcore mode normalization calculation in HE1ll modew)
(xcore mode field description x polarizedx)

2mwy2

w0 = (-—-—-—) (neffccrez-nzz) ;
A

U= ubal;

W= wlal;

n =nl;

U? BegselJd[1, U]
B2 = {-

{(*Alx);
W2 BesselK([1l, W]

Ercore = ul (xAl+) BesselJ[O0, ulr] ;

Edcore = - ul(xAlw) BesselJ[0, udrj] ;
nl

Hrcore = —— ul (*Alx) BesselJ[0, udr}:;
z0
nl

Hpcore = - ul (xAlx) BesselJ[0, uldr];
20

Erclad = B2 w0 (-BesselK[0, wOr])} ;
E¢clad = - B2wO (- BesselK[0, wOr])
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nl

Hrclad = ~— B2 w0 (- BesselK[0, wOr]);
Z0o
nl

H¢clad = —— B2 w0 (- BesselK[0, wOTr]):
Z0

Pcoremode =

1
- Re [NIntegrate[ (Ercore Hécore Cos[¢]? - Hrcore Edcore Sin{¢] 2) r, {¢, 0, 2},

{r, 0, al}, Method » {"GlobalAdaptive", Method » "GauassKronrodRule¥,

»"SingularityDepth" - Infinity}]] +
1
— Re[NIntegrate[(Erclad H¢clad Cos[¢]? - Hrclad E¢clad Sin[¢]?) r,
2

{¢, 0, 2x}, {r, al, a2}, Method » {"GlobalAdaptive®,
Method + "GaussKronrodRule", "SingularityDepth® » Infinity}]];

1
E0lcoExact = .‘/ e &
Pcoremode

integrationTermTMp[x ] := ( Ercore Cos[¢] Ertmcorex]
E¢core Sin[¢] E¢tmcorex] )
r Exp[+2IKgrCosl[¢] 8in{e]]:

+

gelminusT™Mp([x ] := ——— nl EO0lcoExact EO0vtm[x+ I 0.] NIntegrate{
(4 A 20)
integrationTermTMp({x], {¢. 0, 2xn}, (r,

Method » "GaussXronrodRule”, *SingularityDepth” » Infinity} 1;

0, al}, Method -» {"GlobalAdaptive",

Return{gclminusT™p[neff]]; ]



