Privacy-aware Decentralized and Scalable Access Control Management for IoT Environment

Abrar O. Alkhamisi and Fathy Alboraei Abrar O. Alkhamisi and Fathy Alboraei
2019 journal of king abdulaziz university computing and information technology sciences  
In recent years, the Internet of Things (IoT) plays a vital role in our daily activities .Owing to the increased number of vulnerabilities on the IoT devices, security becomes critical in the untrustworthy IoT environment. Access control is one of the top security concerns, however, implementing the traditional access control mechanisms in the resource-constrained nature of the IoT devices is a challenging task. With the emergence of blockchain technology, several recent research works have
more » ... sed on the adoption of blockchain in IoT to resolve the security concerns. Despite, integrating the blockchain in the resource-constrained IoT context is difficult. To overcome these obstacles, the proposed work presents a privacy-aware IoT security architecture to ensure the access control based on Smart contract for resource-constrained and distributed IoT devices. The design of the proposed architecture incorporates three main components such as the contextual blockchain gateway, decentralized revocation manager, and non-interactive zero-knowledge proof based validation. By modeling the contextual blockchain gateway, the proposed architecture ensures the dynamic authentication and authorization based on the contextual information and access policies. Instead of integrating the blockchain technology into resource-constrained IoT devices, the smart contract-based distributed access control system with the contextual blockchain gateway provides the scalable solution. With the association of decentralized revocation manager in the smart contract, it prevents the resource access from the unauthorized users by dynamically generating and updating the revoked user list of all the nodes in the smart contract. Moreover, the proposed architecture employs the non-interactive zeroknowledge proof cryptographic protocol to ensure the transaction privacy within the smart contract. Consequently, it maintains the trade-off between the transparency and privacy while ensuring the security for the distributed IoT environment.
doi:10.4197/comp.8-1.7 fatcat:md57pr7l7vh65biamo25rkffvy