Evolutionary Analysis of Transcriptional Regulation Mediated by Cdx2 in Rodents [article]

Weizheng Liang, Guipeng Li, Huanhuan Cui, Yukai Wang, Wencheng Wei, Siyue Sun, Diwen Gan, Rui Chen, Hongyang Yi, Bernhard Schaefke, Yuhui Hu, Qi Zhou (+2 others)
2021 bioRxiv   pre-print
AbstractDifferences in gene expression, which can arise from divergence in cis-regulatory elements or alterations in transcription factors binding specificity, are one of the most important causes of phenotypic diversity during evolution. By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential
more » ... sitive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Author summaryOur study 1) represented a first systematic analysis of species-specific adaptation in DNA binding pattern of transcription factor. Although the mouse-specific amino acid changes did not manifest functional impact in our system, several explanations may account for it (See Discussion part for the detail); 2) represented a first study of cis-regulation between two reproductively isolated species by using a novel allodiploid system; 3) demonstrated a higher conservation of transcriptional output than that of DNA binding, suggesting the evolvability/plasticity of the latter; 4) finally provided a rich data resource for Cdx2 mediated regulation, including gene expression, chromatin accessibility and DNA binding etc.
doi:10.1101/2021.03.01.433326 fatcat:qqmpjevit5a6rliytei7qwvqpm