Dynamic Green's functions in discrete flexural systems

K H Madine, D J Colquitt
2021 Quarterly Journal of Mechanics and Applied Mathematics  
The article presents an analysis of the dynamic behaviour of discrete flexural systems composed of Euler–Bernoulli beams. The canonical object of study is the discrete Green's function, from which information regarding the dynamic response of the lattice under point loading by forces and moments can be obtained. Special attention is devoted to the interaction between flexural and torsional waves in a square lattice of Euler–Bernoulli beams, which is shown to yield a range of novel effects,
more » ... ding extreme dynamic anisotropy, asymmetric wave propagation, wave-guiding, filtering and the ability to create localised defect modes, all without the need for additional resonant elements or interfaces. The analytical study is complimented by numerical computations and finite element simulations, both of which are used to illustrate the effects predicted. A general algorithm is provided for constructing Green's functions as well as defect modes. This algorithm allows the tuning of the lattice to produce pass bands, band gaps, resonant modes, wave-guides and defect modes, over any desired frequency range.
doi:10.1093/qjmam/hbab006 fatcat:x55lmhntvvhknjsibcp2riadrq