A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Dima
2017
Proceedings of the VLDB Endowment
Data analysts in industries spend more than 80% of time on data cleaning and integration in the whole process of data analytics due to data errors and inconsistencies. It calls for effective query processing techniques to tolerate the errors and inconsistencies. In this paper, we develop a distributed in-memory similarity-based query processing system called Dima. Dima supports two core similarity-based query operations, i.e., similarity search and similarity join. Dima extends the SQL
doi:10.14778/3137765.3137810
fatcat:sbj6yphv2ndjfa32grnszrhoaq