DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning [article]

Yuliang Wei, Haotian Li, Yao Wang, Guodong Xin, Hongri Liu
2021 arXiv   pre-print
Knowledge graphs (KGs), as structured representations of real world facts, are intelligent databases incorporating human knowledge that can help machine imitate the way of human problem solving. However, due to the nature of rapid iteration as well as incompleteness of data, KGs are usually huge and there are inevitably missing facts in KGs. Link prediction for knowledge graphs is the task aiming to complete missing facts by reasoning based on the existing knowledge. Two main streams of
more » ... are widely studied: one learns low-dimensional embeddings for entities and relations that can capture latent patterns, and the other gains good interpretability by mining logical rules. Unfortunately, previous studies rarely pay attention to heterogeneous KGs. In this paper, we propose DegreEmbed, a model that combines embedding-based learning and logic rule mining for inferring on KGs. Specifically, we study the problem of predicting missing links in heterogeneous KGs that involve entities and relations of various types from the perspective of the degrees of nodes. Experimentally, we demonstrate that our DegreEmbed model outperforms the state-of-the-art methods on real world datasets. Meanwhile, the rules mined by our model are of high quality and interpretability.
arXiv:2112.09933v1 fatcat:ar3sae45frcylownkrhu3ndqoy