Plant-Derived and Dietary Hydroxybenzoic Acids—A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines

Monika Kalinowska, Ewelina Gołębiewska, Grzegorz Świderski, Sylwia Męczyńska-Wielgosz, Hanna Lewandowska, Anna Pietryczuk, Adam Cudowski, Aleksander Astel, Renata Świsłocka, Mariola Samsonowicz, Anna Barbara Złowodzka, Waldemar Priebe (+1 others)
2021 Nutrients  
Seven derivatives of plant-derived hydroxybenzoic acid (HBA)—including 2,3-dihydroxybenzoic (2,3-DHB, pyrocatechuic), 2,4-dihydroxybenzoic (2,4-DHB, β-resorcylic), 2,5-dihydroxybenzoic (2,5-DHB, gentisic), 2,6-dihydroxybenzoic (2,6-DHB, γ-resorcylic acid), 3,4-dihydroxybenzoic (3,4-DHB, protocatechuic), 3,5-dihydroxybenzoic (3,5-DHB, α-resorcylic), and 3,4,5-trihydroxybenzoic (3,4,5-THB, gallic) acids—were studied for their structural and biological properties. Anti-/pro-oxidant properties were
more » ... evaluated by using DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power), CUPRAC (cupric-reducing antioxidant power), and Trolox oxidation assays. Lipophilicity was estimated by means of experimental (HPLC) and theoretical methods. The antimicrobial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Salmonella enteritidis (S. enteritidis), and Candida albicans (C. albicans) was studied. The cytotoxicity of HBAs in MCF-7 and MDA-MB-231 cell lines was estimated. Moreover, the structure of HBAs was studied by means of experimental (FTIR, 1H, and 13C NMR) and quantum chemical DFT methods (the NBO and CHelpG charges, electrostatic potential maps, and electronic parameters based on the energy of HOMO and LUMO orbitals). The aromaticity of HBA was studied based on the calculated geometric and magnetic aromaticity indices (HOMA, Aj, BAC, I6, NICS). The biological activity of hydroxybenzoic acids was discussed in relation to their geometry, the electronic charge distribution in their molecules, their lipophilicity, and their acidity. Principal component analysis (PCA) was used in the statistical analysis of the obtained data and the discussion of the dependency between the structure and activity (SAR: structure–activity relationship) of HBAs. This work provides valuable information on the potential application of hydroxybenzoic acids as bioactive components in dietary supplements, functional foods, or even drugs.
doi:10.3390/nu13093107 pmid:34578985 pmcid:PMC8466373 fatcat:qqljrn2tpzealcnyix3i355c5u