A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Constraint Guided Neighbor Generation for Protein Structure Prediction
2022
IEEE Access
Protein structure prediction (PSP) is essential for drug discovery. PSP involves minimising an unknown scoring function over an astronomical search space. PSP has achieved significant progress recently via end-to-end deep learning models that require enormous computational resources and almost all known proteins as training data. In this paper, we develop a conformational search method for PSP based on scoring functions involving geometric constraints learnt by deep learning models. When
doi:10.1109/access.2022.3176945
fatcat:tjuwsq7oqzflfjudox7uh4bmk4