A Multichannel Gray Level Co-Occurrence Matrix for Multi/Hyperspectral Image Texture Representation

Xin Huang, Xiaobo Liu, Liangpei Zhang
2014 Remote Sensing  
This study proposes a novel method for multichannel image gray level co-occurrence matrix (GLCM) texture representation. It is well known that the standard procedure for the automatic extraction of GLCM textures is based on a mono-spectral image. In real applications, however, the GLCM texture feature extraction always refers to multi/hyperspectral images. The widely used strategy to deal with this issue is to calculate the GLCM from the first principal component or the panchromatic band, which
more » ... romatic band, which do not include all the useful information. Accordingly, in this study, we propose to represent the multichannel textures for multi/hyperspectral imagery by the use of: (1) clustering algorithms; and (2) sparse representation, respectively. In this way, the multi/hyperspectral images can be described using a series of quantized codes or dictionaries, which are more suitable for multichannel texture representation than the traditional methods. Specifically, K-means and fuzzy c-means methods are adopted to generate the codes of an image from the clustering point of view, while a sparse dictionary learning method based on two coding rules is proposed to produce the texture primitives. The proposed multichannel GLCM textural extraction methods were evaluated with four multi/hyperspectral datasets: GeoEye-1 and QuickBird multispectral images of the city of Wuhan, the well-known AVIRIS hyperspectral dataset from the Indian Pines test site, and the HYDICE airborne hyperspectral dataset from the Washington DC Mall. The results show that both the clustering-based and sparsity-based GLCM textures outperform the traditional method (extraction based on the first principal component) in terms of classification accuracies in all the experiments. OPEN ACCESS Remote Sens. 2014, 6 8425
doi:10.3390/rs6098424 fatcat:7sgrspg5mjbptd5hwo5xuuhwe4